Suppr超能文献

血管内皮细胞在 VEGF-A 浓度梯度中的激活:与细胞命运决定的相关性。

Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions.

机构信息

Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.

出版信息

Microvasc Res. 2010 Jul;80(1):65-74. doi: 10.1016/j.mvr.2010.02.001. Epub 2010 Feb 6.

Abstract

Distribution of vascular endothelial cell growth factor A (VEGF-A) as a gradient determines microvascular endothelial cell (EC) fate during organogenesis. While much is understood about mechanisms of differential distribution, less is known about how EC perceive and interpret a graded VEGF-A signal to generate positional target gene activation. Using microvascular EC, we analyzed the effect of time and graded VEGF-A input on VEGFR2 autophosphorylation, signal kinase activation and induction of immediate-early genes. The threshold and time to peak activation of VEGFR2 were dependent on signal strength over a 50-fold range in concentration with 3-fold concentration differences readily distinguished. Longer duration of exposure did not compensate for low concentration of VEGF-A, suggesting intensity and duration of signal were not interpreted equivalently. With the same conditions, graded and time-sensitive information was transduced through the PLCgamma/p44/p42MAPK signal pathway but not the parallel AKT pathway. Analysis of MAPK-induced angiogenic immediate-early genes determined that EGR-1, EGR-3, and NR4A1 were dependent on graded input while NR4A2 and DSCR1 were independent with 'switch-like' induction. These data demonstrate rapid, linear integration of VEGF-A levels but independent interpretation of duration of signal and identify potential nodes for segregation of gradient-dependent and -independent responses. These results describe how microvascular EC fate decisions can be determined by comparatively moderate changes in VEGF signal strength, resulting in combinatorial changes in the repertoire of immediate-early genes for transcription effectors.

摘要

血管内皮细胞生长因子 A(VEGF-A)的分布呈梯度分布,决定了器官发生过程中微血管内皮细胞(EC)的命运。虽然人们对差异分布的机制有了很多了解,但对于 EC 如何感知和解释梯度 VEGF-A 信号以产生位置靶基因激活知之甚少。我们使用微血管 EC 分析了时间和梯度 VEGF-A 输入对 VEGFR2 自身磷酸化、信号激酶激活和即刻早期基因诱导的影响。VEGFR2 的激活阈值和达到峰值的时间取决于浓度的 50 倍范围内的信号强度,3 倍的浓度差异很容易区分。较长的暴露时间不能弥补 VEGF-A 浓度低的问题,这表明信号的强度和持续时间不能等同地被解释。在相同的条件下,通过 PLCγ/p44/p42MAPK 信号通路而不是平行的 AKT 通路传递分级和时间敏感的信息。通过对 MAPK 诱导的血管生成即刻早期基因的分析,确定 EGR-1、EGR-3 和 NR4A1 依赖于分级输入,而 NR4A2 和 DSCR1 是独立的,具有“开关样”诱导。这些数据表明 VEGF-A 水平的快速、线性整合,但对信号持续时间的独立解释,并确定了用于分离梯度依赖和独立反应的潜在节点。这些结果描述了微血管 EC 命运决定如何可以通过相对中等的 VEGF 信号强度变化来确定,从而导致转录效应物的即刻早期基因谱的组合变化。

相似文献

1
Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions.
Microvasc Res. 2010 Jul;80(1):65-74. doi: 10.1016/j.mvr.2010.02.001. Epub 2010 Feb 6.
3
Molecular controls of lymphatic VEGFR3 signaling.
Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):421-9. doi: 10.1161/ATVBAHA.114.304881. Epub 2014 Dec 18.
4
Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3.
Blood. 2010 Mar 25;115(12):2520-32. doi: 10.1182/blood-2009-07-233478. Epub 2009 Nov 23.
5
L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways.
Integr Biol (Camb). 2011 Apr;3(4):479-89. doi: 10.1039/c0ib00147c. Epub 2011 Feb 1.
10
Vascular endothelial growth factor-A inhibits EphB4 and stimulates delta-like ligand 4 expression in adult endothelial cells.
J Surg Res. 2013 Jul;183(1):478-86. doi: 10.1016/j.jss.2013.01.009. Epub 2013 Feb 1.

引用本文的文献

1
Transcriptional regulators of arterial and venous identity in the developing mammalian embryo.
Curr Opin Physiol. 2023 Oct;35:None. doi: 10.1016/j.cophys.2023.100691.
2
Biomedical applications of solid-binding peptides and proteins.
Mater Today Bio. 2023 Feb 15;19:100580. doi: 10.1016/j.mtbio.2023.100580. eCollection 2023 Apr.
3
IDP-410: a Novel Therapeutic Peptide that Alters N-MYC Stability and Reduces Angiogenesis and Tumor Progression in Glioblastomas.
Neurotherapeutics. 2022 Jan;19(1):408-420. doi: 10.1007/s13311-021-01176-6. Epub 2022 Jan 31.
4
Hepatic stellate cells promote intrahepatic cholangiocarcinoma progression via NR4A2/osteopontin/Wnt signaling axis.
Oncogene. 2021 Apr;40(16):2910-2922. doi: 10.1038/s41388-021-01705-9. Epub 2021 Mar 19.
5
[ improves hypoxia-induced injury of human aortic endothelial cells by regulating c-Fos-NR4A1-p38 pathway].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Feb 25;41(2):200-209. doi: 10.12122/j.issn.1673-4254.2021.02.06.
6
Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth.
Front Immunol. 2020 Dec 3;11:591741. doi: 10.3389/fimmu.2020.591741. eCollection 2020.
7
Rapid transient expression of functional human vascular endothelial growth factor in and characterization of its biological activity.
Biotechnol Rep (Amst). 2020 Aug 15;27:e00514. doi: 10.1016/j.btre.2020.e00514. eCollection 2020 Sep.
8
3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance.
Biomaterials. 2019 Nov;222:119423. doi: 10.1016/j.biomaterials.2019.119423. Epub 2019 Aug 14.
10
Soluble VEGFR1 signaling guides vascular patterns into dense branching morphologies.
J Theor Biol. 2018 Nov 7;456:261-278. doi: 10.1016/j.jtbi.2018.08.005. Epub 2018 Aug 4.

本文引用的文献

1
The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis.
Cell. 2009 Jun 12;137(6):1124-35. doi: 10.1016/j.cell.2009.03.025.
2
Role of VEGF in organogenesis.
Organogenesis. 2008 Oct;4(4):247-56. doi: 10.4161/org.4.4.7415.
3
Emerging pulmonary vasculature lacks fate specification.
Am J Physiol Lung Cell Mol Physiol. 2009 Jan;296(1):L71-81. doi: 10.1152/ajplung.90452.2008. Epub 2008 Oct 24.
5
The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching.
J Cell Biol. 2008 Jun 2;181(5):847-58. doi: 10.1083/jcb.200709114. Epub 2008 May 26.
6
Theoretical and experimental approaches to understand morphogen gradients.
Mol Syst Biol. 2008;4:176. doi: 10.1038/msb.2008.14. Epub 2008 Mar 25.
7
Modulation of VEGF signalling output by the Notch pathway.
Bioessays. 2008 Apr;30(4):303-13. doi: 10.1002/bies.20736.
8
The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis.
Oncogene. 2008 May 8;27(21):2989-98. doi: 10.1038/sj.onc.1210959. Epub 2007 Dec 3.
10
Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting.
J Biol Chem. 2007 Aug 17;282(33):24049-56. doi: 10.1074/jbc.M703554200. Epub 2007 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验