Institute of Chemical and Engineering Sciences (ICES), 1, Pesek Road, Jurong Island, Singapore 627833.
ACS Nano. 2010 Mar 23;4(3):1425-32. doi: 10.1021/nn9012675.
Herein, we report a rational method to synthesize a Co3O4 nanobelt array on a conducting substrate and functionalize it in the application of Li-ion battery anodes, which is a novel and facile approach to access the nanobelt array of transition metal oxides. Compared to the previous reports, the as-prepared samples in our experiments exhibited both mesoporosity and single-crystallinity, and meanwhile, good contact with the conducting substrate (via a thin layer of TiO2) provided an express pathway for charge transfer when they were applied in Li-ion batteries without any need to add other ancillary materials (carbon black or binder) to enhance the system's conductivity and stability. Under the condition of high charge-discharge current density of 177 mA/g in Li-ion batteries' testing, the Co3O4 nanobelt array was capable of retaining the specific capacity of 770 mAh/g over 25 cycles. Moreover, even though the charge-discharge rates were increased to 1670 and 3350 mA/g, it still could have reached the stable retention of the specific capacity of 510 and 330 mAh/g beyond 30 cycles, respectively, indicating an obtainable excellent rate capability. More importantly, the improved performance in Li-ion battery testing was definitely ascribed to the unique structures in our samples after elaborate analysis. So the final conclusion would be given that the lab-synthesized Co3O4 nanobelt array potentially could be a highly qualified candidate for Li-ion battery anodes in some practical fields, where high capacity and good capability are strictly required.
在此,我们报告了一种在导电基底上合成 Co3O4 纳米带阵列并将其功能化用于锂离子电池阳极的合理方法,这是一种获得过渡金属氧化物纳米带阵列的新颖且简便的方法。与以前的报道相比,我们实验中制备的样品既具有介孔性又具有单晶性,同时,与导电基底(通过一层薄的 TiO2)良好接触,当它们在锂离子电池中应用时,为电荷转移提供了一个快速通道,而无需添加其他辅助材料(如炭黑或粘合剂)来提高系统的导电性和稳定性。在锂离子电池测试中高充放电电流密度为 177 mA/g 的条件下,Co3O4 纳米带阵列能够在 25 个循环中保持 770 mAh/g 的比容量。此外,即使充放电速率增加到 1670 和 3350 mA/g,它仍然可以在 30 个循环以上分别达到稳定的 510 和 330 mAh/g 的比容量保留,这表明其具有优异的倍率性能。更重要的是,经过详细分析,锂离子电池测试中性能的提高肯定归因于我们样品的独特结构。因此,最终得出的结论是,实验室合成的 Co3O4 纳米带阵列在某些需要高容量和良好性能的实际领域中,很可能成为锂离子电池阳极的一个极具潜力的候选者。