School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China.
Sci Rep. 2017 Jan 18;7:40927. doi: 10.1038/srep40927.
Highlighted by the safe operation and stable performances, titanium oxides (TiO) are deemed as promising candidates for next generation lithium-ion batteries (LIBs). However, the pervasively low capacity is casting shadow on desirable electrochemical behaviors and obscuring their practical applications. In this work, we reported a unique template-assisted and two-step atomic layer deposition (ALD) method to achieve TiO@FeO core-shell nanotube arrays with hollow interior and double-wall coating. The as-prepared architecture combines both merits of the high specific capacity of FeO and structural stability of TiO backbone. Owing to the nanotubular structural advantages integrating facile strain relaxation as well as rapid ion and electron transport, the TiO@FeO nanotube arrays with a high mass loading of FeO attained desirable capacity of 520 mA h g, exhibiting both good rate capability under uprated current density of 10 A g and especially enhanced cycle stability (450 mA h g after 600 cycles), outclassing most reported TiO@metal oxide composites. The results not only provide a new avenue for hybrid core-shell nanotube formation, but also offer an insight for rational design of advanced electrode materials for LIBs.
以安全的操作和稳定的性能为特点,钛氧化物 (TiO) 被认为是下一代锂离子电池 (LIB) 的有前途的候选材料。然而,普遍较低的容量对理想的电化学性能投下了阴影,并掩盖了它们的实际应用。在这项工作中,我们报道了一种独特的模板辅助和两步原子层沉积 (ALD) 方法,以实现具有中空内部和双层涂层的 TiO@FeO 核壳纳米管阵列。所制备的结构结合了 FeO 的高比容量和 TiO 骨架的结构稳定性的优点。由于纳米管状结构的优势,包括易于应变松弛以及快速的离子和电子传输,具有高 FeO 质量负载的 TiO@FeO 纳米管阵列实现了理想的容量约为 520 mA h g,在提高的电流密度 10 A g 下表现出良好的倍率性能,特别是增强的循环稳定性(600 次循环后约为 450 mA h g),超过了大多数报道的 TiO@金属氧化物复合材料。这些结果不仅为混合核壳纳米管的形成提供了新途径,而且为合理设计用于 LIB 的先进电极材料提供了深入了解。