Centre National de la Recherche Scientifique, UPR 9036, Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, and Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
Biochemistry. 2010 Mar 23;49(11):2424-32. doi: 10.1021/bi902140e.
Rhodobacter sphaeroides periplasmic nitrate reductase (Rs NapAB) is one of the enzymes whose assays give odd results: in spectrophotometric assays with methyl viologen as the electron donor, the activity increases as the reaction progresses, whereas the driving force provided by the soluble redox partner decreases; in protein film voltammetry (PFV), whereby the enzyme directly exchanges electrons with an electrode, the activity of NapAB decreases at large overpotential, whereas a monotonic increase is expected [Elliott, S. J., et al. (2002) Biochim. Biophys. Acta 1555, 54-59]. The relations between these phenomena and the catalytic mechanism are still debated. By studying NapAB mutants, we found that the peculiar dependences of electrochemical and solution activities on driving force are greatly affected by substituting certain amino acids that are located in the vicinity of the active site (M153, Q384, R392); this led us to establish and discuss the relation between the experimental parameters of the electrochemical and spectrophotometric assays: we show that the rate of reduction of the enzyme (which depends on the electrode potential or on the concentration of reduced MV) modulates the activity of the enzyme, but the "solution potential" does not. Our results also support the view that the complex profiles of activity versus potential are fingerprints of the active site chemistry, rather than direct consequences of changes in the redox states of relays that are remote from the active site.
球形红杆菌周质硝酸盐还原酶(RsNapAB)是一种酶,其测定结果很奇怪:在以甲紫精作为电子供体的分光光度测定中,随着反应的进行,活性增加,而可溶性氧化还原伴侣提供的驱动力降低;在蛋白质膜伏安法(PFV)中,酶直接与电极交换电子,NapAB 的活性在大过电势下降低,而预计会出现单调增加[Elliott,S. J.等。(2002)生物化学。生物物理。学报 1555, 54-59]。这些现象与催化机制之间的关系仍存在争议。通过研究 NapAB 突变体,我们发现电化学和溶液活性对驱动力的特殊依赖性受取代某些位于活性位点附近的氨基酸的影响很大(M153、Q384、R392);这使我们建立并讨论了电化学和分光光度测定实验参数之间的关系:我们表明,酶的还原速率(取决于电极电位或还原 MV 的浓度)调节酶的活性,但“溶液电位”不会。我们的结果还支持这样一种观点,即活性与电势的复杂关系是活性位点化学的指纹,而不是远离活性位点的中继氧化还原状态变化的直接后果。