Suppr超能文献

使用机器学习加速手动图像标注:在测量秀丽隐杆线虫胚胎中单细胞基因表达的 3D 成像方案中的应用。

Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

BMC Bioinformatics. 2010 Feb 11;11:84. doi: 10.1186/1471-2105-11-84.

Abstract

BACKGROUND

Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing) is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours.

RESULTS

In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions) and train a support vector machine (SVM) classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net.

CONCLUSIONS

We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task.

摘要

背景

图像分析是许多研究基因表达、细胞周期进程和蛋白质定位的生物学实验的重要组成部分。本研究开发了一种跟踪单个秀丽隐杆线虫基因表达的方案,该方案通过 3D 时程显微镜收集发育胚胎的图像样本。在该方案中,名为 StarryNite 的程序执行自动识别荧光标记细胞并追踪其谱系的功能。然而,由于数据中存在大量噪声,以及在发育后期细胞数量增加带来的挑战,该程序并非无错误的。在当前版本中,使用专门为此任务开发的图形界面工具 AceTree 手动执行错误更正(即编辑)。对于单个实验,此手动注释任务需要数小时。

结果

在本文中,我们减少了纠正 StarryNite 错误所需的时间。我们针对最常见的错误类型之一(被注释为分裂的运动),并训练支持向量机(SVM)分类器来判断 StarryNite 做出的分裂调用是否正确。我们通过在几个基准数据集上进行交叉验证实验表明,SVM 能够成功识别这种类型的错误。包含经过训练的 SVM 分类器的新版本 StarryNite 可在 http://starrynite.sourceforge.net 上获得。

结论

我们展示了机器学习方法在 StarryNite 错误注释中的实用性。在此过程中,我们还提供了一些关于针对给定模式识别任务开发和验证分类器的一般方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验