Wang Meng, Zhou Xiaobo, Li Fuhai, Huckins Jeremy, King Randall W, Wong Stephen T C
Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical School, 3rd floor, 1249 Boylston, Boston, MA 02215, USA.
Bioinformatics. 2008 Jan 1;24(1):94-101. doi: 10.1093/bioinformatics/btm530. Epub 2007 Nov 7.
Automated identification of cell cycle phases captured via fluorescent microscopy is very important for understanding cell cycle and for drug discovery. In this article, we propose a novel cell detection method that utilizes both the intensity and shape information of the cell for better segmentation quality. In contrast to conventional off-line learning algorithms, an Online Support Vector Classifier (OSVC) is thus proposed, which removes support vectors from the old model and assigns new training examples weighted according to their importance to accommodate the ever-changing experimental conditions.
We image three cell lines using fluorescent microscopy under different experiment conditions, including one treated with taxol. Then, we segment and classify the cell types into interphase, prophase, metaphase and anaphase. Experimental results show the effectiveness of the proposed system in image segmentation and cell phase identification.
The software and test datasets are available from the authors.
通过荧光显微镜捕获的细胞周期阶段的自动识别对于理解细胞周期和药物发现非常重要。在本文中,我们提出了一种新颖的细胞检测方法,该方法利用细胞的强度和形状信息以获得更好的分割质量。与传统的离线学习算法不同,我们提出了一种在线支持向量分类器(OSVC),它从旧模型中移除支持向量,并根据新训练示例的重要性对其进行加权,以适应不断变化的实验条件。
我们在不同的实验条件下,使用荧光显微镜对三种细胞系进行成像,其中一种用紫杉醇处理。然后,我们将细胞类型分割并分类为间期、前期、中期和后期。实验结果表明了所提出系统在图像分割和细胞阶段识别中的有效性。
作者提供了软件和测试数据集。