Department of Biochemistry, University of Western Ontario, London, Ontario N6B 2G3, Canada.
J Biol Chem. 2010 Apr 9;285(15):11290-6. doi: 10.1074/jbc.M109.089078. Epub 2010 Feb 10.
The ATPase activity of the maltose transporter (MalFGK(2)) is dependent on interactions with the maltose-binding protein (MBP). To determine whether direct interactions between the translocated sugar and MalFGK(2) are important for the regulation of ATP hydrolysis, we used an MBP mutant (sMBP) that is able to bind either maltose or sucrose. We observed that maltose- and sucrose-bound sMBP stimulate equal levels of MalFGK(2) ATPase activity. Therefore, the ATPase activity of MalFGK(2) is coupled to translocation of maltose solely by interactions between MalFGK(2) and MBP. For both maltose and sucrose, the ability of sMBP to stimulate the MalFGK(2) ATPase was greatly reduced compared with wild-type MBP, indicating that the mutations in sMBP have interfered with important interactions between MBP and MalFGK(2). High resolution crystal structure analysis of sMBP shows that in the closed conformation with bound sucrose, three of four mutations are buried, and the fourth causes only a minor change in the accessible surface. In contrast, in the open form of sMBP, all of the mutations are accessible, and the main chain of Tyr(62)-Gly(69) is destabilized and occupies an alternative conformation due to the W62Y mutation. On this basis, the compromised ability of sMBP to stimulate ATP hydrolysis by MalFGK(2) is most likely due to a disruption of interactions between MalFGK(2) and the open, rather than the closed, conformation of sMBP. Modeling the open sMBP structure bound to MalFGK(2) in the transition state for ATP hydrolysis points to an important site of interaction and suggests a mechanism for coupling ATP hydrolysis to substrate translocation that is independent of the exact structure of the substrate.
麦芽糖转运蛋白(MalFGK(2))的 ATP 酶活性依赖于与麦芽糖结合蛋白(MBP)的相互作用。为了确定跨膜糖与 MalFGK(2)之间的直接相互作用是否对 ATP 水解的调节很重要,我们使用了一种能够结合麦芽糖或蔗糖的 MBP 突变体(sMBP)。我们观察到麦芽糖和蔗糖结合的 sMBP 能同等程度地刺激 MalFGK(2)的 ATP 酶活性。因此,麦芽糖的跨膜转运仅通过 MalFGK(2)和 MBP 之间的相互作用来调节 MalFGK(2)的 ATP 酶活性。对于麦芽糖和蔗糖,sMBP 刺激 MalFGK(2)ATP 酶的能力与野生型 MBP 相比大大降低,这表明 sMBP 中的突变干扰了 MBP 和 MalFGK(2)之间的重要相互作用。sMBP 的高分辨率晶体结构分析表明,在结合蔗糖的封闭构象中,四个突变中的三个被掩埋,第四个仅导致可及表面的微小变化。相比之下,在 sMBP 的开放形式中,所有的突变都是可及的,由于 W62Y 突变,Tyr(62)-Gly(69)的主链不稳定并占据替代构象。在此基础上,sMBP 刺激 MalFGK(2)水解 ATP 的能力受损很可能是由于 MalFGK(2)与开放而不是封闭构象的 sMBP 之间的相互作用被破坏所致。建模 sMBP 结构与 MalFGK(2)在 ATP 水解的过渡态结合,指向一个重要的相互作用位点,并提出了一种将 ATP 水解与底物跨膜转运偶联的机制,该机制独立于底物的精确结构。