Suppr超能文献

尿路梗阻导致肾组织中 COX-2 衍生的前列腺素短暂积聚。

Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue.

机构信息

Deptartment of Clinical Physiology and Nuclear Medicine, Aarhus University Hospital-Skejby, Brendstrupgaardsvej, DK-8200 Aarhus N, Denmark.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R1017-25. doi: 10.1152/ajpregu.00336.2009. Epub 2010 Feb 10.

Abstract

Inhibitors of cyclooxygenase (COX)-2 prevent suppression of aquaporin-2 and reduce polyuria in the acute phase after release of bilateral ureteral obstruction (BUO). We hypothesized that BUO leads to COX-2-mediated local accumulation of prostanoids in inner medulla (IM) tissue. To test this, rats were subjected to BUO and treated with selective COX-1 or COX-2 inhibitors. Tissue was examined at 2, 6, 12, and 24 h after BUO. COX-2 protein abundance increased in IM 12 and 24 h after onset of BUO but did not change in cortex. COX-1 did not change at any time points in any region. A full profile of all five primary prostanoids was obtained by mass spectrometric determination of PGE(2), PGF(2alpha), 6-keto-PGF(1alpha), PGD(2), and thromboxane (Tx) B(2) concentrations in kidney cortex/outer medulla and IM fractions. IM concentration of PGE(2), 6-keto-PGF(1alpha), and PGF(2alpha) was increased at 6 h BUO, and PGE(2) and PGF(2alpha) increased further at 12 h BUO. TxB(2) increased after 12 h BUO. 6-keto-PGF(1alpha) remained significantly increased after 24 h BUO. The COX-2 inhibitor parecoxib lowered IM PGE(2,) TxB(2), 6-keto-PGF(1alpha), and PGF(2alpha) below vehicle-treated BUO and sham rats at 6, 12 and, 24 h BUO. The COX-1 inhibitor SC-560 lowered PGE(2), PGF(2alpha), and PGD(2) in IM compared with untreated 12 h BUO, but levels remained significantly above sham. In cortex tissue, PGE(2) and 6-keto-PGF(1alpha) concentrations were elevated at 6 h only. In conclusion, COX-2 activity contributes to the transient increase in prostacyclin metabolite 6-keto-PGF(1alpha) and TxB(2) concentration in the kidney IM, and COX-2 is the predominant isoform that is responsible for accumulation of PGE(2) and PGF(2alpha) with minor, but significant, contributions from COX-1. PGD(2) synthesis is mediated exclusively by COX-1. In BUO, therapeutic interventions aimed at the COX-prostanoid pathway should target primarily COX-2.

摘要

环氧化酶(COX)-2 抑制剂可防止水通道蛋白-2 的抑制,并减少双侧输尿管梗阻(BUO)后急性期的多尿。我们假设 BUO 导致 COX-2 介导的前列腺素在内髓质(IM)组织中的局部积累。为了验证这一点,将大鼠进行 BUO 处理,并使用选择性 COX-1 或 COX-2 抑制剂进行治疗。在 BUO 后 2、6、12 和 24 小时检查组织。COX-2 蛋白丰度在 BUO 发作后 12 和 24 小时增加,但在皮质中没有变化。在任何区域的任何时间点,COX-1 均未改变。通过质谱法测定肾皮质/外髓质和 IM 级分中 PGE(2),PGF(2alpha),6-酮-PGF(1alpha),PGD(2)和血栓素 B(2)浓度,获得了所有五种主要前列腺素的完整图谱。BUO 后 6 小时 IM 中 PGE(2),6-酮-PGF(1alpha)和 PGF(2alpha)的浓度增加,BUO 后 12 小时 PGE(2)和 PGF(2alpha)的浓度进一步增加。BUO 后 12 小时 TxB(2)增加。BUO 后 24 小时 6-酮-PGF(1alpha)仍显着增加。COX-2 抑制剂帕瑞昔布可将 IM PGE(2),TxB(2),6-酮-PGF(1alpha)和 PGF(2alpha)降低至与 BUO 和假手术大鼠的载体处理相比,BUO 后 6、12 和 24 小时。COX-1 抑制剂 SC-560 降低了 IM 中与未经处理的 12 小时 BUO 相比 PGE(2),PGF(2alpha)和 PGD(2)的浓度,但水平仍显着高于假手术。在皮质组织中,仅在 6 小时时 PGE(2)和 6-酮-PGF(1alpha)浓度升高。总之,COX-2 活性有助于肾脏 IM 中前列腺素代谢物 6-酮-PGF(1alpha)和 TxB(2)浓度的短暂增加,并且 COX-2 是负责 PGE(2)和 PGF(2alpha)积累的主要同工酶,而 COX-1 则具有较小但重要的贡献。PGD(2)合成仅由 COX-1 介导。在 BUO 中,针对 COX-前列腺素途径的治疗干预应主要针对 COX-2。

相似文献

1
Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R1017-25. doi: 10.1152/ajpregu.00336.2009. Epub 2010 Feb 10.
2
COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction.
Am J Physiol Renal Physiol. 2007 May;292(5):F1322-33. doi: 10.1152/ajprenal.00394.2006. Epub 2007 Jan 16.
3
Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse.
Am J Physiol Renal Physiol. 2012 Jun 1;302(11):F1430-9. doi: 10.1152/ajprenal.00682.2011. Epub 2012 Mar 7.
4
Dietary soy protein selectively reduces renal prostanoids and cyclooxygenases in polycystic kidney disease.
Exp Biol Med (Maywood). 2009 Jul;234(7):737-43. doi: 10.3181/0811-RM-315. Epub 2009 May 8.
5
Selectivity of cyclooxygenase isoform activity and prostanoid production in normal and diseased Han:SPRD-cy rat kidneys.
Am J Physiol Renal Physiol. 2006 Apr;290(4):F897-904. doi: 10.1152/ajprenal.00332.2005. Epub 2005 Oct 18.
6
COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction.
Am J Physiol Renal Physiol. 2005 Aug;289(2):F322-33. doi: 10.1152/ajprenal.00061.2005. Epub 2005 Apr 19.
8
Angiotensin II regulates V2 receptor and pAQP2 during ureteral obstruction.
Am J Physiol Renal Physiol. 2009 Jan;296(1):F127-34. doi: 10.1152/ajprenal.90479.2008. Epub 2008 Oct 29.
9
Increased renal adrenomedullin expression in rats with ureteral obstruction.
Am J Physiol Regul Integr Comp Physiol. 2009 Jan;296(1):R185-92. doi: 10.1152/ajpregu.00170.2008. Epub 2008 Oct 22.

引用本文的文献

1
Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis.
Physiol Rev. 2023 Oct 1;103(4):2827-2872. doi: 10.1152/physrev.00027.2022. Epub 2023 Jul 13.
2
Low dimensional nanomaterials for treating acute kidney injury.
J Nanobiotechnology. 2022 Dec 1;20(1):505. doi: 10.1186/s12951-022-01712-2.
5
EP receptor antagonism mitigates early and late stage renal fibrosis.
Acta Physiol (Oxf). 2022 Mar;234(3):e13780. doi: 10.1111/apha.13780. Epub 2022 Jan 30.
6
Bilateral ureteral obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F135-F147. doi: 10.1152/ajprenal.00113.2019. Epub 2019 Nov 18.
7
Nonsteroidal Anti-Inflammatory Drugs and the Kidney.
Pharmaceuticals (Basel). 2010 Jul 21;3(7):2291-2321. doi: 10.3390/ph3072291.
9
Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney.
Kidney Res Clin Pract. 2015 Dec;34(4):194-200. doi: 10.1016/j.krcp.2015.10.004. Epub 2015 Nov 12.
10
NSAIDs Alter Phosphorylated Forms of AQP2 in the Inner Medullary Tip.
PLoS One. 2015 Oct 30;10(10):e0141714. doi: 10.1371/journal.pone.0141714. eCollection 2015.

本文引用的文献

1
COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction.
Am J Physiol Renal Physiol. 2007 May;292(5):F1322-33. doi: 10.1152/ajprenal.00394.2006. Epub 2007 Jan 16.
2
Differentiation of cyclooxygenase 1- and 2-derived prostanoids in mouse kidney and aorta.
Hypertension. 2006 Aug;48(2):323-8. doi: 10.1161/01.HYP.0000231934.67549.b7. Epub 2006 Jun 26.
3
Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus.
Am J Physiol Renal Physiol. 2006 Feb;290(2):F438-49. doi: 10.1152/ajprenal.00158.2005. Epub 2005 Sep 13.
4
Cyclo-oxygenase-2 contributes to constitutive prostanoid production in rat kidney and brain.
Biochem J. 2005 Nov 1;391(Pt 3):561-6. doi: 10.1042/BJ20050451.
5
COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction.
Am J Physiol Renal Physiol. 2005 Aug;289(2):F322-33. doi: 10.1152/ajprenal.00061.2005. Epub 2005 Apr 19.
7
Pharmacological profile of parecoxib: a novel, potent injectable selective cyclooxygenase-2 inhibitor.
Eur J Pharmacol. 2004 Apr 26;491(1):69-76. doi: 10.1016/j.ejphar.2004.03.013.
8
Membrane-associated PGE synthase-1 (mPGES-1) is coexpressed with both COX-1 and COX-2 in the kidney.
Kidney Int. 2004 Apr;65(4):1205-13. doi: 10.1111/j.1523-1755.2004.00493.x.
9
Regional expression of cyclooxygenase isoforms in the rat kidney in complete unilateral ureteral obstruction.
J Urol. 2003 Oct;170(4 Pt 1):1403-8. doi: 10.1097/01.ju.0000082964.24635.15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验