Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California-San Francisco, 505 Parnassus Ave., San Francisco, CA 94143-0132, USA.
Biol Reprod. 2010 Jun;82(6):1076-87. doi: 10.1095/biolreprod.109.082867. Epub 2010 Feb 10.
The cellular sources that contribute to the renewal of human endometrium are largely unknown. It has been suggested that endometrial stem cells originate from bone marrow-derived mesenchymal stem cells (MSC), with subsequent development into endometrial stromal fibroblasts (hESF). We hypothesized that if bone marrow-derived MSC contribute to endometrial regeneration and are progenitors of hESF, their treatment with agents known to regulate hESF differentiation could promote their differentiation down the stromal fibroblast lineage. To this end, we treated bone marrow-derived MSC with estradiol and progesterone, bone morphogenetic protein 2 (BMP2), and activators of the protein kinase A (PKA) pathway and investigated specific markers of hESF differentiation (decidualization). Furthermore, we investigated the transcriptome of these cells in response to cAMP and compared this to the transcriptome of hESF decidualized in response to activation of the PKA pathway. The data support the idea that MSC can be differentiated down the hESF pathway, as evidenced by changes in cell shape and common expression of decidual markers and other genes important in hESF differentiation and function, and that bone marrow-derived MSC may be a source of endometrial stem/progenitor cells. In addition, we identified MSC-specific markers that distinguish them from other fibroblasts and, in particular, from hESF, which is of biologic relevance and practical value to the field of endometrial stem cell research.
子宫内膜再生的细胞来源在很大程度上尚不清楚。有人提出,子宫内膜干细胞来源于骨髓间充质干细胞(MSC),随后发育为子宫内膜基质成纤维细胞(hESF)。我们假设,如果骨髓来源的 MSC 有助于子宫内膜的再生,并且是 hESF 的前体细胞,那么用已知能调节 hESF 分化的药物处理它们,可以促进它们向基质成纤维细胞系分化。为此,我们用雌二醇和孕酮、骨形态发生蛋白 2(BMP2)以及蛋白激酶 A(PKA)通路的激活剂处理骨髓来源的 MSC,并研究 hESF 分化(蜕膜化)的特定标记物。此外,我们还研究了这些细胞对 cAMP 的转录组反应,并将其与 hESF 在 PKA 通路激活下蜕膜化的转录组进行了比较。这些数据支持了 MSC 可以沿着 hESF 途径分化的观点,这表现在细胞形态的变化以及蜕膜化的共同标记物和其他在 hESF 分化和功能中重要的基因的共同表达,并且骨髓来源的 MSC 可能是子宫内膜干细胞/前体细胞的来源。此外,我们还鉴定了 MSC 特有的标记物,将其与其他成纤维细胞区分开来,特别是与 hESF 区分开来,这对于子宫内膜干细胞研究领域具有生物学意义和实际价值。