Suppr超能文献

发现参与精胺代谢并调节铜绿假单胞菌生物膜形成的操纵子。

Discovery of an operon that participates in agmatine metabolism and regulates biofilm formation in Pseudomonas aeruginosa.

机构信息

Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Mol Microbiol. 2010 Apr;76(1):104-19. doi: 10.1111/j.1365-2958.2010.07083.x. Epub 2010 Feb 10.

Abstract

Agmatine is the decarboxylation product of arginine and a number of bacteria have devoted enzymatic pathways for its metabolism. Pseudomonas aeruginosa harbours the aguBA operon that metabolizes agmatine to putrescine, which can be subsequently converted into other polyamines or shunted into the TCA cycle for energy production. We discovered an alternate agmatine operon in the P. aeruginosa strain PA14 named agu2ABCA' that contains two genes for agmatine deiminases (agu2A and agu2A'). This operon was found to be present in 25% of clinical P. aeruginosa isolates. Agu2A' contains a twin-arginine translocation signal at its N-terminus and site-directed mutagenesis and cell fractionation experiments confirmed this protein is secreted to the periplasm. Analysis of the agu2ABCA' promoter demonstrates that agmatine induces expression of the operon during the stationary phase of growth and during biofilm growth and agu2ABCA' provides only weak complementation of aguBA, which is induced during log phase. Biofilm assays of mutants of all three agmatine deiminase genes in PA14 revealed that deletion of agu2ABCA', specifically its secreted product Agu2A', reduces biofilm production of PA14 following addition of exogenous agmatine. Together, these findings reveal a novel role for the agu2ABCA' operon in the biofilm development of P. aeruginosa.

摘要

胍丁胺是精氨酸脱羧产物,许多细菌都有专门的代谢途径来代谢胍丁胺。铜绿假单胞菌拥有 aguBA 操纵子,可将胍丁胺代谢为腐胺,腐胺随后可转化为其他多胺,或分流到 TCA 循环中用于产生能量。我们在铜绿假单胞菌 PA14 株中发现了一个替代的胍丁胺操纵子,命名为 agu2ABCA',该操纵子包含两个胍丁胺脱氨酶基因(agu2A 和 agu2A')。该操纵子在 25%的临床分离铜绿假单胞菌中存在。Agu2A'在其 N 端含有双精氨酸转运信号,定点突变和细胞分级实验证实该蛋白被分泌到周质中。对 agu2ABCA'启动子的分析表明,在生长的静止期和生物膜生长期间,胍丁胺诱导该操纵子的表达,而 agu2ABCA'仅对 log 期诱导的 aguBA 进行微弱的互补。PA14 中所有三个胍丁胺脱氨酶基因的突变体的生物膜测定表明,缺失 agu2ABCA',特别是其分泌产物 Agu2A',可减少外源胍丁胺添加后 PA14 生物膜的产生。总之,这些发现揭示了 agu2ABCA'操纵子在铜绿假单胞菌生物膜发育中的新作用。

相似文献

1
Discovery of an operon that participates in agmatine metabolism and regulates biofilm formation in Pseudomonas aeruginosa.
Mol Microbiol. 2010 Apr;76(1):104-19. doi: 10.1111/j.1365-2958.2010.07083.x. Epub 2010 Feb 10.
4
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2008 Mar;190(6):1966-75. doi: 10.1128/JB.01804-07. Epub 2008 Jan 11.
6
Development of a Pseudomonas aeruginosa Agmatine Biosensor.
Biosensors (Basel). 2014 Oct 29;4(4):387-402. doi: 10.3390/bios4040387. eCollection 2014 Dec.
9
Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation.
Appl Environ Microbiol. 2005 Aug;71(8):4407-13. doi: 10.1128/AEM.71.8.4407-4413.2005.
10

引用本文的文献

3
Role of the polyamine transporter PotABCD during biofilm formation by Streptococcus pneumoniae.
PLoS One. 2024 Aug 7;19(8):e0307573. doi: 10.1371/journal.pone.0307573. eCollection 2024.
4
Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in .
Int J Mol Sci. 2022 Apr 15;23(8):4386. doi: 10.3390/ijms23084386.
5
Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and c-di-GMP Synthesis in Pseudomonas aeruginosa.
J Bacteriol. 2022 Jan 18;204(1):e0029721. doi: 10.1128/JB.00297-21. Epub 2021 Nov 1.
7
Bacterial transcription during growth arrest.
Transcription. 2021 Aug;12(4):232-249. doi: 10.1080/21541264.2021.1968761. Epub 2021 Sep 6.
8
The expansive effects of polyamines on the metabolism and virulence of Streptococcus pneumoniae.
Pneumonia (Nathan). 2021 Mar 25;13(1):4. doi: 10.1186/s41479-021-00082-x.
9
SP_0916 Is an Arginine Decarboxylase That Catalyzes the Synthesis of Agmatine, Which Is Critical for Capsule Biosynthesis in .
Front Microbiol. 2020 Sep 18;11:578533. doi: 10.3389/fmicb.2020.578533. eCollection 2020.
10
Agmatine accumulation by Pseudomonas aeruginosa clinical isolates confers antibiotic tolerance and dampens host inflammation.
J Med Microbiol. 2019 Mar;68(3):446-455. doi: 10.1099/jmm.0.000928. Epub 2019 Jan 22.

本文引用的文献

1
Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays.
J Basic Microbiol. 2008 Dec;48(6):509-15. doi: 10.1002/jobm.200800030.
2
Phagocyte-derived catecholamines enhance acute inflammatory injury.
Nature. 2007 Oct 11;449(7163):721-5. doi: 10.1038/nature06185. Epub 2007 Sep 30.
4
Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa.
J Bacteriol. 2007 Jul;189(14):5383-6. doi: 10.1128/JB.00137-07. Epub 2007 May 11.
5
Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients.
Mol Microbiol. 2007 Apr;64(2):512-33. doi: 10.1111/j.1365-2958.2007.05678.x.
6
Polyamine effects on antibiotic susceptibility in bacteria.
Antimicrob Agents Chemother. 2007 Jun;51(6):2070-7. doi: 10.1128/AAC.01472-06. Epub 2007 Apr 16.
7
Different behavior of agmatine in liver mitochondria: inducer of oxidative stress or scavenger of reactive oxygen species?
Biochim Biophys Acta. 2007 May;1768(5):1147-53. doi: 10.1016/j.bbamem.2007.01.011. Epub 2007 Jan 25.
8
Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway.
Virology. 2007 Mar 30;360(1):209-17. doi: 10.1016/j.virol.2006.10.010. Epub 2006 Nov 13.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验