Suppr超能文献

使用图形模型理解人类功能。

Understanding human functioning using graphical models.

机构信息

Swiss Paraplegic Research (SPF), Nottwil, Switzerland.

出版信息

BMC Med Res Methodol. 2010 Feb 11;10:14. doi: 10.1186/1471-2288-10-14.

Abstract

BACKGROUND

Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined and open the door to a more comprehensive understanding of human functioning. The objective of our paper therefore is to explore how graphical models can be used in the study of ICF data for a range of applications.

METHODS

We show the applicability of graphical models on ICF data for different tasks: Visualization of the dependence structure of the data set, dimension reduction and comparison of subpopulations. Moreover, we further developed and applied recent findings in causal inference using graphical models to estimate bounds on intervention effects in an observational study with many variables and without knowing the underlying causal structure.

RESULTS

In each field, graphical models could be applied giving results of high face-validity. In particular, graphical models could be used for visualization of functioning in patients with spinal cord injury. The resulting graph consisted of several connected components which can be used for dimension reduction. Moreover, we found that the differences in the dependence structures between subpopulations were relevant and could be systematically analyzed using graphical models. Finally, when estimating bounds on causal effects of ICF categories on general health perceptions among patients with chronic health conditions, we found that the five ICF categories that showed the strongest effect were plausible.

CONCLUSIONS

Graphical Models are a flexible tool and lend themselves for a wide range of applications. In particular, studies involving ICF data seem to be suited for analysis using graphical models.

摘要

背景

功能和残疾是普遍的人类体验。然而,我们目前从综合角度理解功能的能力有限。国际功能、残疾和健康分类(ICF)的发展,以及图形建模的最新发展,可能会结合起来,为更全面地理解人类功能开辟道路。因此,我们的论文的目的是探索图形模型如何在 ICF 数据的研究中得到应用,以实现各种应用。

方法

我们展示了图形模型在不同任务中对 ICF 数据的适用性:数据集依赖结构的可视化、降维和亚群比较。此外,我们进一步发展并应用了图形模型中因果推理的最新发现,以在一个具有许多变量且不知道潜在因果结构的观察性研究中估计干预效果的界限。

结果

在每个领域,图形模型都可以应用,结果具有很高的表面有效性。特别是,图形模型可以用于可视化脊髓损伤患者的功能。生成的图形由几个连接的组件组成,这些组件可用于降维。此外,我们发现亚群之间依赖结构的差异是相关的,可以使用图形模型进行系统分析。最后,在估计 ICF 类别对慢性健康状况患者一般健康感知的因果效应的界限时,我们发现,对一般健康感知有最强影响的五个 ICF 类别是合理的。

结论

图形模型是一种灵活的工具,适用于广泛的应用。特别是,涉及 ICF 数据的研究似乎适合使用图形模型进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce06/2831907/9337ba83b287/1471-2288-10-14-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验