Suppr超能文献

一种具有各向异性纳米纤维/微球复合材料的生物分子控制释放用于纤维组织工程。

An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering.

机构信息

Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Biomaterials. 2010 May;31(14):4113-20. doi: 10.1016/j.biomaterials.2010.01.098. Epub 2010 Feb 10.

Abstract

Aligned nanofibrous scaffolds can recapitulate the structural hierarchy of fiber-reinforced tissues of the musculoskeletal system. While these electrospun fibrous scaffolds provide physical cues that can direct tissue formation when seeded with cells, the ability to chemically guide a population of cells, without disrupting scaffold mechanical properties, would improve the maturation of such constructs and add additional functionality to the system both in vitro and in vivo. In this study, we developed a fabrication technique to entrap drug-delivering microspheres within nanofibrous scaffolds. We hypothesized that entrapping microspheres between fibers would have a less adverse impact on mechanical properties than placing microspheres within the fibers themselves, and that the composite would exhibit sustained release of multiple model compounds. Our results show that microspheres ranging from 10 - 20 microns in diameter could be electrospun in a dose-dependent manner to form nanofibrous composites. When delivered in a sacrificial PEO fiber population, microspheres remained securely entrapped between slow-degrading PCL fibers after removal of the sacrificial delivery component. Stiffness and modulus of the composite decreased with increasing microsphere density for composites in which microspheres were entrapped within each fiber, while stiffness did not change when microspheres were entrapped between fibers. The release profiles of the composite structures were similar to free microspheres, with an initial burst release followed by a sustained release of the model molecules over 4 weeks. Further, multiple model molecules were released from a single scaffold composite, demonstrating the capacity for multi-factor controlled release ideal for complex growth factor delivery from these structures.

摘要

排列的纳米纤维支架可以再现肌肉骨骼系统纤维增强组织的结构层次。虽然这些静电纺丝纤维支架提供了物理线索,可以在接种细胞时指导组织形成,但能够在不破坏支架机械性能的情况下化学引导细胞群体,将改善这些结构的成熟度,并为体外和体内系统增加额外的功能。在这项研究中,我们开发了一种将载药微球包埋在纳米纤维支架中的制造技术。我们假设将微球包埋在纤维之间对机械性能的不利影响将小于将微球置于纤维内部,并且复合材料将表现出多种模型化合物的持续释放。我们的结果表明,直径为 10-20 微米的微球可以以剂量依赖的方式静电纺丝形成纳米纤维复合材料。当在牺牲的 PEO 纤维群中递送时,微球在去除牺牲的递送组件后仍牢固地包埋在缓慢降解的 PCL 纤维之间。当微球被包埋在每根纤维内时,复合材料的刚度和模量随微球密度的增加而降低,而当微球被包埋在纤维之间时,刚度没有变化。复合结构的释放曲线与游离微球相似,具有初始突释,然后在 4 周内持续释放模型分子。此外,多种模型分子从单个支架复合材料中释放出来,证明了从这些结构中释放多种因子的能力,这是复杂生长因子释放的理想选择。

相似文献

1
An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering.
Biomaterials. 2010 May;31(14):4113-20. doi: 10.1016/j.biomaterials.2010.01.098. Epub 2010 Feb 10.
2
Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds.
J Biomech Eng. 2009 Oct;131(10):101012. doi: 10.1115/1.3192140.
3
Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering.
J Control Release. 2009 Mar 4;134(2):81-90. doi: 10.1016/j.jconrel.2008.10.021. Epub 2008 Nov 17.
5
Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
Acta Biomater. 2010 Aug;6(8):3004-12. doi: 10.1016/j.actbio.2010.01.045. Epub 2010 Feb 6.
6
Biocompatibility and bioactivity of an FGF-loaded microsphere-based bilayer delivery system.
Acta Biomater. 2020 Jul 15;111:341-348. doi: 10.1016/j.actbio.2020.04.048. Epub 2020 May 16.
8
Composite scaffolds: bridging nanofiber and microsphere architectures to improve bioactivity of mechanically competent constructs.
J Biomed Mater Res A. 2010 Dec 15;95(4):1150-8. doi: 10.1002/jbm.a.32934. Epub 2010 Sep 28.
9
The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.
Biomaterials. 2008 May;29(15):2348-58. doi: 10.1016/j.biomaterials.2008.01.032. Epub 2008 Mar 3.
10
Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
J Biomed Mater Res A. 2014 Jun;102(6):1897-908. doi: 10.1002/jbm.a.34857. Epub 2013 Jul 30.

引用本文的文献

1
Physical and Soluble Cues Enhance Tendon Progenitor Cell Invasion into Injectable Synthetic Hydrogels.
Adv Funct Mater. 2022 Nov 24;32(48):2207556. doi: 10.1002/adfm.202207556. Epub 2022 Sep 28.
2
Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration".
ACS Appl Bio Mater. 2024 Sep 16;7(9):6325-6331. doi: 10.1021/acsabm.4c01057. Epub 2024 Aug 20.
3
Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration.
ACS Appl Bio Mater. 2024 Jul 15;7(7):4270-4292. doi: 10.1021/acsabm.4c00613. Epub 2024 Jul 1.
4
Instructional materials that control cellular activity through synthetic Notch receptors.
Biomaterials. 2023 Jun;297:122099. doi: 10.1016/j.biomaterials.2023.122099. Epub 2023 Mar 29.
5
Transient inhibition of meniscus cell migration following acute inflammatory challenge.
J Orthop Res. 2023 Sep;41(9):2055-2064. doi: 10.1002/jor.25545. Epub 2023 Mar 22.
6
Engineering Electrospun Nanofibers for the Treatment of Oral Diseases.
Front Chem. 2021 Dec 20;9:797523. doi: 10.3389/fchem.2021.797523. eCollection 2021.
7
Six-Month Outcomes of Clinically Relevant Meniscal Injury in a Large-Animal Model.
Orthop J Sports Med. 2021 Nov 12;9(11):23259671211035444. doi: 10.1177/23259671211035444. eCollection 2021 Nov.
9
Perspective: Aligned arrays of electrospun nanofibers for directing cell migration.
APL Mater. 2018 Dec;6(12). doi: 10.1063/1.5058083. Epub 2018 Dec 10.

本文引用的文献

1
Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus.
Nat Mater. 2009 Dec;8(12):986-92. doi: 10.1038/nmat2558. Epub 2009 Oct 25.
2
The reliable targeting of specific drug release profiles by integrating arrays of different albumin-encapsulated microsphere types.
Biomaterials. 2009 Dec;30(34):6648-54. doi: 10.1016/j.biomaterials.2009.08.035. Epub 2009 Sep 22.
3
New directions in nanofibrous scaffolds for soft tissue engineering and regeneration.
Expert Rev Med Devices. 2009 Sep;6(5):515-32. doi: 10.1586/erd.09.39.
4
Encapsulation of multiple biological compounds within a single electrospun fiber.
Small. 2009 Jul;5(13):1508-12. doi: 10.1002/smll.200801750.
5
Influence of donor age on the biomechanical and biochemical properties of human meniscal allografts.
Am J Sports Med. 2009 May;37(5):884-9. doi: 10.1177/0363546508330140. Epub 2009 Mar 31.
7
Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts.
Clin Sports Med. 2009 Jan;28(1):157-76. doi: 10.1016/j.csm.2008.08.006.
8
ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus.
Spine (Phila Pa 1976). 2008 Dec 1;33(25):2691-701. doi: 10.1097/BRS.0b013e31818e61f7.
10
Tissue engineering with meniscus cells derived from surgical debris.
Osteoarthritis Cartilage. 2009 Mar;17(3):336-45. doi: 10.1016/j.joca.2008.08.001. Epub 2008 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验