Suppr超能文献

直道而行的工程:用于纤维增强组织再生的纳米纤维组件的力学。

Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

机构信息

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Tissue Eng Part B Rev. 2009 Jun;15(2):171-93. doi: 10.1089/ten.TEB.2008.0652.

Abstract

Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

摘要

组织工程学是一个具有挑战性的研究领域,尤其是在构建复杂的纤维组织和器官时。为了应对这些挑战,科学家们采用了多种方法,包括使用生物材料和细胞来构建组织工程支架,以及利用基因治疗和干细胞技术来促进组织再生。

在组织工程学中,支架是一种重要的材料,它可以提供细胞生长和增殖的三维环境,并通过调节细胞外基质的组成和结构来影响细胞的行为和功能。支架的设计和制备对于组织工程的成功至关重要,需要考虑多种因素,如支架的生物相容性、降解性、机械性能、孔隙率、表面形貌和生物活性等。

目前,已经开发了多种支架制备技术,包括静电纺丝、相分离、模板合成、3D 打印等。其中,静电纺丝是一种常用的方法,可以制备出具有纳米级纤维结构的支架,这种支架具有高比表面积、高孔隙率和良好的生物相容性,可以促进细胞的黏附和增殖。

除了支架的设计和制备外,细胞的来源和培养也是组织工程学中的关键问题。目前,常用的细胞来源包括自体细胞、同种异体细胞和异种细胞。自体细胞是最理想的细胞来源,因为它们不会引起免疫排斥反应,但获取自体细胞需要进行手术,可能会带来一定的风险和创伤。同种异体细胞和异种细胞可以通过体外培养获得,但需要进行严格的质量控制和安全性评估,以避免免疫排斥反应和疾病传播的风险。

总之,组织工程学是一个快速发展的领域,它为构建复杂的纤维组织和器官提供了新的思路和方法。随着技术的不断进步和创新,相信组织工程学将会在医学和生物科学领域中发挥越来越重要的作用。

相似文献

5
Fibrous scaffolds for building hearts and heart parts.用于构建心脏及心脏部件的纤维支架。
Adv Drug Deliv Rev. 2016 Jan 15;96:83-102. doi: 10.1016/j.addr.2015.11.020. Epub 2015 Dec 4.
6
Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering.用于组织工程的静电纺丝三维定向纳米纤维支架。
Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:995-1005. doi: 10.1016/j.msec.2018.06.065. Epub 2018 Jun 30.

引用本文的文献

4
A roadmap for developing and engineering pulmonary fibrosis models.肺纤维化模型开发与构建路线图。
Biophys Rev (Melville). 2023 Apr 28;4(2):021302. doi: 10.1063/5.0134177. eCollection 2023 Jun.
10
Regenerating dynamic organs using biomimetic patches.利用仿生贴片再生动态器官。
Trends Biotechnol. 2022 Mar;40(3):338-353. doi: 10.1016/j.tibtech.2021.07.001. Epub 2021 Aug 16.

本文引用的文献

4
A review on electrospinning design and nanofibre assemblies.关于静电纺丝设计与纳米纤维组件的综述
Nanotechnology. 2006 Jul 28;17(14):R89-R106. doi: 10.1088/0957-4484/17/14/R01. Epub 2006 Jun 30.
8
Tissue engineering with meniscus cells derived from surgical debris.利用源自手术碎片的半月板细胞进行组织工程。
Osteoarthritis Cartilage. 2009 Mar;17(3):336-45. doi: 10.1016/j.joca.2008.08.001. Epub 2008 Oct 10.
10
In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers.
J Biomed Mater Res B Appl Biomater. 2009 Apr;89(1):135-47. doi: 10.1002/jbm.b.31196.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验