Suppr超能文献

国际腰椎研究学会奖获得者:整合理论与实验方法用于纤维环功能组织工程

ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus.

作者信息

Nerurkar Nandan L, Mauck Robert L, Elliott Dawn M

机构信息

McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6081, USA.

出版信息

Spine (Phila Pa 1976). 2008 Dec 1;33(25):2691-701. doi: 10.1097/BRS.0b013e31818e61f7.

Abstract

STUDY DESIGN

Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering.

OBJECTIVE

Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios.

SUMMARY OF BACKGROUND DATA

There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy.

METHODS

Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model).

RESULTS

The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading.

CONCLUSION

AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.

摘要

研究设计

整合用于纤维环(AF)功能组织工程的理论和实验方法。

目的

应用超弹性本构模型通过标量模型参数表征工程化AF的演变。验证该模型并预测工程构建体对生理加载情况的响应。

背景数据总结

需要一种用于退化AF的组织工程替代物。在评估用于承重组织的工程替代物时,有必要评估相对于天然组织的机械功能,包括非线性和各向异性。

方法

将具有规定纤维角度的排列纳米纤维聚己内酯支架接种牛AF细胞,并在8周内使用实验方法(力学测试、生物化学、组织学)和理论方法(超弹性纤维增强本构模型)进行分析。

结果

培养1天到8周,对于纤维角度为0度的构建体,线性区域模量增加约25MPa,对于纤维角度为90度的构建体增加约2MPa。观察到AF细胞向支架内浸润和增殖,以及大量硫酸糖胺聚糖(s-GAG)沉积和排列的胶原蛋白。本构模型与实验数据拟合良好,得出随培养时间增加的基质和纤维参数。观察到生化指标与模型参数之间的相关性。该模型成功得到验证,并用于模拟工程化AF在剪切和双轴加载下的时变响应。

结论

接种在纳米纤维支架上的AF细胞形成了有组织的、各向异性的AF样细胞外基质,从而改善了力学性能。超弹性纤维增强本构模型表征了工程化AF构建体的功能演变,并用于模拟生理相关的加载构型。模型预测表明,即使剪切方向与纤维方向不一致,纤维也能抵抗剪切。此外,该模型表明天然AF纤维结构经过独特设计,以支持在多种加载构型下遇到的剪切应力。

相似文献

1
ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus.
Spine (Phila Pa 1976). 2008 Dec 1;33(25):2691-701. doi: 10.1097/BRS.0b013e31818e61f7.
3
Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering.
Biomech Model Mechanobiol. 2011 Dec;10(6):973-84. doi: 10.1007/s10237-011-0288-0. Epub 2011 Feb 3.
4
Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds.
J Mech Behav Biomed Mater. 2011 Nov;4(8):1627-36. doi: 10.1016/j.jmbbm.2011.03.022. Epub 2011 Mar 23.
5
Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension.
Spine J. 2014 Mar 1;14(3):424-34. doi: 10.1016/j.spinee.2013.08.047. Epub 2013 Oct 4.
6
Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
J Biomech Eng. 2007 Oct;129(5):632-41. doi: 10.1115/1.2768378.
8
Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus.
J Mech Behav Biomed Mater. 2011 Nov;4(8):1611-9. doi: 10.1016/j.jmbbm.2011.03.016. Epub 2011 Mar 14.
9
Engineered disc-like angle-ply structures for intervertebral disc replacement.
Spine (Phila Pa 1976). 2010 Apr 15;35(8):867-73. doi: 10.1097/BRS.0b013e3181d74414.
10
Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):477-482. doi: 10.1073/pnas.1715912115. Epub 2017 Dec 27.

引用本文的文献

1
Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway.
J Orthop Surg Res. 2025 Jan 23;20(1):86. doi: 10.1186/s13018-025-05492-x.
3
Three-Dimensional-Printed Flexible Scaffolds Have Tunable Biomimetic Mechanical Properties for Intervertebral Disc Tissue Engineering.
ACS Biomater Sci Eng. 2021 Dec 13;7(12):5836-5849. doi: 10.1021/acsbiomaterials.1c01326. Epub 2021 Nov 29.
4
Multiscale composite model of fiber-reinforced tissues with direct representation of sub-tissue properties.
Biomech Model Mechanobiol. 2020 Apr;19(2):745-759. doi: 10.1007/s10237-019-01246-x. Epub 2019 Nov 4.
5
Promise, progress, and problems in whole disc tissue engineering.
JOR Spine. 2018 May 23;1(2):e1015. doi: 10.1002/jsp2.1015. eCollection 2018 Jun.
6
Tissue Engineering of the Intervertebral Disc's Annulus Fibrosus: A Scaffold-Based Review Study.
Tissue Eng Regen Med. 2017 Mar 8;14(2):81-91. doi: 10.1007/s13770-017-0024-7. eCollection 2017 Apr.
7
A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering.
Int J Nanomedicine. 2018 Mar 15;13:1553-1567. doi: 10.2147/IJN.S143990. eCollection 2018.
8
Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2869-2876. doi: 10.1021/acsbiomaterials.6b00646. Epub 2016 Dec 8.
10
[Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2016 Mar;45(2):132-40. doi: 10.3785/j.issn.1008-9292.2016.03.05.

本文引用的文献

1
Engineering of fiber-reinforced tissues with anisotropic biodegradable nanofibrous scaffolds.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:787-90. doi: 10.1109/IEMBS.2006.259395.
2
Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
J Biomech Eng. 2007 Oct;129(5):632-41. doi: 10.1115/1.2768378.
3
Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration.
Macromol Biosci. 2007 Nov 12;7(11):1217-24. doi: 10.1002/mabi.200700053.
6
Porous silk scaffolds can be used for tissue engineering annulus fibrosus.
Eur Spine J. 2007 Nov;16(11):1848-57. doi: 10.1007/s00586-007-0364-4. Epub 2007 Apr 20.
7
Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers.
J Biomech Eng. 2007 Apr;129(2):240-9. doi: 10.1115/1.2486179.
8
Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells.
J Biomed Mater Res A. 2007 Sep 1;82(3):701-10. doi: 10.1002/jbm.a.31030.
9
The effect of nanofiber alignment on the maturation of engineered meniscus constructs.
Biomaterials. 2007 Apr;28(11):1967-77. doi: 10.1016/j.biomaterials.2007.01.004. Epub 2007 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验