Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacan, 04510 México, DF, Mexico.
Cell Calcium. 2010 Mar;47(3):199-209. doi: 10.1016/j.ceca.2010.01.002. Epub 2010 Feb 10.
Depletion of intracellular calcium stores via activation of G-protein-coupled receptors associated to the inositol trisphosphate cascade, or by the blockade of the endoplasmic reticulum calcium APTase (SERCA) results in the activation of calcium influx via the so-called store-operated channels (SOCs). The recent identification of STIM1 as the putative sensing molecule responsible for communicating the depleted state of intracellular calcium stores to the plasma membrane channel highlights the relevance of protein complexes in calcium signaling. Further developments in this area identify Orai as part of the store-operated channel complex. Upon depletion of intracellular calcium stores, STIM1 (at the ER) and Orai (at the plasma membrane) aggregate into macromolecular complexes. This molecular aggregation appears to be necessary to induce activation of calcium influx. Several studies have identified novel members from what I would like to define here as the store-operated calcium influx complex (SOCIC), such as the TRPC1 channel, SERCA and the microtubule end tracking protein, EB1. An orchestrated series of events involving the association and dissociation of several protein complexes culminate with the activation of calcium influx upon depletion of the ER. There are other likely players in this sophisticated signaling mechanism, waiting to be uncovered. The SOCIC assembly does not appear to occur in random areas of the plasma membrane, but rather in highly specialized areas known as lipid raft domains. These results strongly suggest that not only proteins but lipids also may be part or active players in the modulation of the store-operated calcium entry (SOCE). In this review we will analyze the evidence supporting macromolecular complex assembly as a prerequisite for SOC activation. We will highlight the evidence showing novel members from SOCIC and speculate about possible yet undiscovered members and players in this highly regulated calcium signaling mechanism. Finally we will discuss about the role of lipid raft domains in controlling store- and agonist-activated calcium influx.
细胞内钙库通过激活与三磷酸肌醇级联反应相关的 G 蛋白偶联受体或通过阻断内质网钙 APTase(SERCA)而耗竭,导致通过所谓的钙库操纵通道(SOCs)激活钙内流。最近,STIM1 被鉴定为负责将细胞内钙库耗竭状态传递给质膜通道的假定感应分子,突出了蛋白质复合物在钙信号转导中的相关性。该领域的进一步发展将 Orai 鉴定为钙库操纵通道复合物的一部分。细胞内钙库耗竭时,STIM1(在内质网)和 Orai(在质膜)聚集形成大分子复合物。这种分子聚集似乎是诱导钙内流激活所必需的。几项研究已经鉴定出一些新的成员,我想在这里将其定义为钙库操纵钙内流复合物(SOCIC),例如 TRPC1 通道、SERCA 和微管末端追踪蛋白 EB1。涉及几个蛋白复合物的缔合和解离的一系列协调事件,最终导致 ER 耗竭时钙内流的激活。在这个复杂的信号机制中,还有其他可能的参与者,有待发现。SOCIC 组装似乎不是在质膜的任意区域发生,而是在高度特化的区域,称为脂筏域。这些结果强烈表明,不仅蛋白质,而且脂质也可能是钙库操纵钙内流(SOCE)调节的一部分或活跃参与者。在这篇综述中,我们将分析支持大分子复合物组装作为 SOC 激活前提的证据。我们将突出显示来自 SOCIC 的新成员的证据,并推测在这个高度调控的钙信号机制中可能还有未发现的成员和参与者。最后,我们将讨论脂筏域在控制钙库和激动剂激活钙内流中的作用。