Suppr超能文献

青蛙耳的力学

Mechanics of the frog ear.

机构信息

Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, The Netherlands.

出版信息

Hear Res. 2011 Mar;273(1-2):46-58. doi: 10.1016/j.heares.2010.02.004. Epub 2010 Feb 10.

Abstract

The frog inner ear contains three regions that are sensitive to airborne sound and which are functionally distinct. (1) The responses of nerve fibres innervating the low-frequency, rostral part of the amphibian papilla (AP) are complex. Electrical tuning of hair cells presumably contributes to the frequency selectivity of these responses. (2) The caudal part of the AP covers the mid-frequency portion of the frog's auditory range. It shares the ability to generate both evoked and spontaneous otoacoustic emissions with the mammalian cochlea and other vertebrate ears. (3) The basilar papilla functions mainly as a single auditory filter. Its simple anatomy and function provide a model system for testing hypotheses concerning emission generation. Group delays of stimulus-frequency otoacoustic emissions (SFOAEs) from the basilar papilla are accounted for by assuming that they result from forward and reverse transmission through the middle ear, a mechanical delay due to tectorial membrane filtering and a rapid forward and reverse propagation through the inner ear fluids, with negligible delay.

摘要

青蛙内耳包含三个对空气传播声音敏感且功能不同的区域。(1)支配两栖类动物耳斑(AP)前侧低频部分的神经纤维的反应是复杂的。毛细胞的电调谐可能有助于这些反应的频率选择性。(2)AP 的后侧部分覆盖了青蛙听觉范围的中频部分。它与哺乳动物耳蜗和其他脊椎动物的耳朵一样,具有产生诱发和自发耳声发射的能力。(3)基底乳头主要作为一个单一的听觉滤波器。它简单的解剖结构和功能为测试关于发射产生的假说提供了一个模型系统。通过假设刺激频率耳声发射(SFOAEs)从基底乳头产生是由于通过中耳的正向和反向传输、由于听小骨膜滤波产生的机械延迟以及通过内耳液体的快速正向和反向传播,同时忽略延迟,可以解释它们的群延迟。

相似文献

1
Mechanics of the frog ear.
Hear Res. 2011 Mar;273(1-2):46-58. doi: 10.1016/j.heares.2010.02.004. Epub 2010 Feb 10.
2
Distortion product otoacoustic emissions in the tree frog Hyla cinerea.
Hear Res. 2001 Mar;153(1-2):14-22. doi: 10.1016/s0378-5955(00)00251-3.
3
Mechanics of the exceptional anuran ear.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 May;194(5):417-28. doi: 10.1007/s00359-008-0327-1. Epub 2008 Apr 3.
4
Tuning of the tectorial membrane in the basilar papilla of the northern leopard frog.
J Assoc Res Otolaryngol. 2009 Sep;10(3):309-20. doi: 10.1007/s10162-009-0167-x. Epub 2009 Jun 2.
5
Hair cells, hearing and hopping: a field guide to hair cell physiology in the frog.
J Exp Biol. 2000 Aug;203(Pt 15):2237-46. doi: 10.1242/jeb.203.15.2237.
7
Mechanical filtering of sound in the inner ear.
Proc Biol Sci. 1992 Oct 22;250(1327):29-34. doi: 10.1098/rspb.1992.0126.
8
Basic properties of auditory-nerve responses from a "simple' ear: the basilar papilla of the frog.
Hear Res. 1990 Aug 1;47(1-2):63-82. doi: 10.1016/0378-5955(90)90167-n.
9
Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog.
Biol Lett. 2010 Apr 23;6(2):278-81. doi: 10.1098/rsbl.2009.0763. Epub 2009 Nov 25.
10
Neurophysiological evidence for a traveling wave in the amphibian inner ear.
Science. 1984 Sep 7;225(4666):1037-9. doi: 10.1126/science.6474164.

引用本文的文献

1
Middle Ear Mechanics in the Barn Owl.
J Morphol. 2025 Jan;286(1):e70020. doi: 10.1002/jmor.70020.
2
Fish hearing revealed: Do we understand hearing in critical fishes and marine tetrapods.
J Acoust Soc Am. 2023 Nov 1;154(5):3019-3026. doi: 10.1121/10.0022355.
3
Hidden shifts in allometry scaling between sound production and perception in anurans.
PeerJ. 2023 Nov 3;11:e16322. doi: 10.7717/peerj.16322. eCollection 2023.
4
Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes.
J Exp Zool B Mol Dev Evol. 2024 May;342(3):212-240. doi: 10.1002/jez.b.23222. Epub 2023 Oct 13.
5
Effect of natural abiotic soil vibrations, rainfall and wind on anuran calling behavior: a test with captive-bred midwife toads (Alytes obstetricans).
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jan;209(1):105-113. doi: 10.1007/s00359-022-01596-5. Epub 2022 Dec 12.
6
Transcriptome Analyses Provide Insights into the Auditory Function in .
Animals (Basel). 2022 Sep 14;12(18):2410. doi: 10.3390/ani12182410.
7
Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea.
Trends Neurosci. 2020 Feb;43(2):88-102. doi: 10.1016/j.tins.2019.12.003. Epub 2020 Jan 15.
8
Anthropogenic substrate-borne vibrations impact anuran calling.
Sci Rep. 2019 Dec 19;9(1):19456. doi: 10.1038/s41598-019-55639-0.
9
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts.
J Neurosci. 2019 Sep 11;39(37):7260-7276. doi: 10.1523/JNEUROSCI.2510-18.2019. Epub 2019 Jul 17.
10
MEMRI for visualizing brain activity after auditory stimulation in frogs.
Behav Neurosci. 2019 Jun;133(3):329-340. doi: 10.1037/bne0000318. Epub 2019 May 2.

本文引用的文献

1
Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog.
Biol Lett. 2010 Apr 23;6(2):278-81. doi: 10.1098/rsbl.2009.0763. Epub 2009 Nov 25.
2
Tuning of the tectorial membrane in the basilar papilla of the northern leopard frog.
J Assoc Res Otolaryngol. 2009 Sep;10(3):309-20. doi: 10.1007/s10162-009-0167-x. Epub 2009 Jun 2.
3
Active control of ultrasonic hearing in frogs.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):11014-9. doi: 10.1073/pnas.0802210105. Epub 2008 Jul 25.
5
Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jul;194(7):665-83. doi: 10.1007/s00359-008-0338-y. Epub 2008 May 24.
6
Mechanics of the exceptional anuran ear.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 May;194(5):417-28. doi: 10.1007/s00359-008-0327-1. Epub 2008 Apr 3.
7
Reverse wave propagation in the cochlea.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2729-33. doi: 10.1073/pnas.0708103105. Epub 2008 Feb 12.
8
Suppression of distortion product otoacoustic emissions in the anuran ear.
J Acoust Soc Am. 2007 Jan;121(1):344-51. doi: 10.1121/1.2382458.
9
Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics.
Hear Res. 2006 Oct;220(1-2):67-75. doi: 10.1016/j.heares.2006.07.009. Epub 2006 Aug 30.
10
Temperature dependence of anuran distortion product otoacoustic emissions.
J Assoc Res Otolaryngol. 2006 Sep;7(3):246-52. doi: 10.1007/s10162-006-0039-6. Epub 2006 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验