Department of Biology, The University, D-78457 Konstanz, Germany.
Department of Chemistry, The University, D-78457 Konstanz, Germany.
Microbiology (Reading). 2010 May;156(Pt 5):1556-1564. doi: 10.1099/mic.0.037580-0. Epub 2010 Feb 11.
2,3-Dihydroxypropane-1-sulfonate (DHPS) is a widespread intermediate in plant and algal transformations of sulfoquinovose (SQ) from the plant sulfolipid sulfoquinovosyl diacylglycerol. Further, DHPS is recovered quantitatively during bacterial degradation of SQ by Klebsiella sp. strain ABR11. DHPS is also a putative precursor of sulfolactate in e.g. Ruegeria pomeroyi DSS-3. A bioinformatic approach indicated that some 28 organisms with sequenced genomes might degrade DHPS inducibly via sulfolactate, with three different desulfonative enzymes involved in its degradation in different organisms. The hypothesis for Cupriavidus pinatubonensis JMP134 (formerly Ralstonia eutropha) involved a seven-gene cluster (Reut_C6093-C6087) comprising a LacI-type transcriptional regulator, HpsR, a major facilitator superfamily uptake system, HpsU, three NAD(P)(+)-coupled DHPS dehydrogenases, HpsNOP, and (R)-sulfolactate sulfo-lyase (SuyAB) [EC 4.4.1.24]. HpsOP effected a DHPS-racemase activity, and HpsN oxidized (R)-DHPS to (R)-sulfolactate. The hypothesis for Roseovarius nubinhibens ISM was similar, but involved a tripartite ATP-independent transport system for DHPS, HpsKLM, and two different desulfonative enzymes, (S)-cysteate sulfo-lyase [EC 4.4.1.25] and sulfoacetaldehyde acetyltransferase (Xsc) [EC 2.3.3.15]. Representative organisms were found to grow with DHPS and release sulfate. C. pinatubonensis JMP134 was found to express at least one NAD(P)(+)-coupled DHPS dehydrogenase inducibly, and three different peaks of activity were separated by anion-exchange chromatography. Protein bands (SDS-PAGE) were subjected to peptide-mass fingerprinting, which identified the corresponding genes (hpsNOP). Purified HpsN converted DHPS to sulfolactate. Reverse-transcription PCR confirmed that hpsNOUP were transcribed inducibly in strain JMP134, and that hpsKLM and hpsNOP were transcribed in strain ISM. DHPS degradation is widespread and diverse, implying that DHPS is common in marine and terrestrial environments.
2,3-二羟丙基-1-磺酸酯(DHPS)是植物和藻类将植物硫脂硫代葡糖二酸二酰甘油中的磺基奎诺糖(SQ)转化为磺基奎诺糖的广泛中间体。此外,在 Klebsiella sp. strain ABR11 细菌降解 SQ 的过程中,DHPS 被定量回收。DHPS 也是 Ruegeria pomeroyi DSS-3 中磺基乳酸的可能前体。生物信息学方法表明,大约 28 个具有测序基因组的生物体可能通过磺基乳酸诱导降解 DHPS,不同生物体中涉及三种不同的脱硫酶参与其降解。对 Cupriavidus pinatubonensis JMP134(以前的 Ralstonia eutropha)的假设涉及一个包含七个基因簇(Reut_C6093-C6087)的 LacI 型转录调节因子 HpsR、一个主要的易化剂超家族摄取系统 HpsU、三个 NAD(P)(+) 偶联的 DHPS 脱氢酶 HpsNOP 和 (R)-磺基乳酸磺基裂解酶(SuyAB)[EC 4.4.1.24]。HpsOP 具有 DHPS-消旋酶活性,HpsN 将 (R)-DHPS 氧化为 (R)-磺基乳酸。Roseovarius nubinhibens ISM 的假设相似,但涉及用于 DHPS 的三部分 ATP 独立转运系统 HpsKLM 和两种不同的脱硫酶,(S)-半胱氨酸磺基裂解酶[EC 4.4.1.25]和磺基乙醛乙酰转移酶(Xsc)[EC 2.3.3.15]。发现代表性生物体可以用 DHPS 生长并释放硫酸盐。发现 Cupriavidus pinatubonensis JMP134 至少可诱导表达一种 NAD(P)(+) 偶联的 DHPS 脱氢酶,并用阴离子交换色谱分离出三种不同的活性峰。(SDS-PAGE)蛋白条带进行肽质量指纹图谱分析,鉴定相应的基因(hpsNOP)。纯化的 HpsN 将 DHPS 转化为磺基乳酸。逆转录 PCR 证实 hpsNOUP 在 JMP134 菌株中可诱导转录,而 hpsKLM 和 hpsNOP 在 ISM 菌株中可转录。DHPS 降解广泛而多样,这意味着 DHPS 在海洋和陆地环境中很常见。