Dalton Cardiovascular Research Center, Univ. of Missouri-Columbia, 65211, USA.
Am J Physiol Gastrointest Liver Physiol. 2010 May;298(5):G683-91. doi: 10.1152/ajpgi.00293.2009. Epub 2010 Feb 11.
The majority of dietary amino acids are absorbed via the H(+)-di-/tripeptide transporter Pept1 of the small intestine. Proton influx via Pept1 requires maintenance of intracellular pH (pH(i)) to sustain the driving force for peptide absorption. The apical membrane Na(+)/H(+) exchanger Nhe3 plays a major role in minimizing epithelial acidification during H(+)-di-/tripeptide absorption. However, the contributions of HCO(3)(-)-dependent transporters to this process have not been elucidated. In this study, we investigate the role of putative anion transporter-1 (Pat-1), an apical membrane anion exchanger, in epithelial pH(i) regulation during H(+)-peptide absorption. Using wild-type (WT) and Pat-1(-) mice, Ussing chambers were employed to measure the short-circuit current (I(sc)) associated with Pept1-mediated glycyl-sarcosine (Gly-Sar) absorption. Microfluorometry was used to measure pH(i) and Cl(-)/HCO(3)(-) exchange in the upper villous epithelium. In CO(2)/HCO(3)(-)-buffered Ringers, WT small intestine showed significant Gly-Sar-induced I(sc) and efficient pH(i) regulation during pharmacological inhibition of Nhe3 activity. In contrast, epithelial acidification and reduced I(sc) response to Gly-Sar exposure occurred during pharmacological inhibition of Cl(-)/HCO(3)(-) exchange and in the Pat-1(-) intestine. Pat-1 interacts with carbonic anhydrase II (CAII), and studies using CAII(-) intestine or the pharmacological inhibitor methazolamide on WT intestine resulted in increased epithelial acidification during Gly-Sar exposure. Increased epithelial acidification during Gly-Sar exposure also occurred in WT intestine during inhibition of luminal extracellular CA activity. Measurement of Cl(-)/HCO(3)(-) exchange in the presence of Gly-Sar revealed an increased rate of Cl(-)(OUT)/HCO(3)(-)(IN) exchange that was both Pat-1 dependent and CA dependent. In conclusion, Pat-1 Cl(-)/HCO(3)(-) exchange contributes to pH(i) regulation in the villous epithelium during H(+)-dipeptide absorption, possibly by providing a HCO(3)(-) import pathway.
大多数膳食氨基酸通过小肠的 H(+)-二肽/三肽转运体 Pept1 吸收。质子通过 Pept1 流入需要维持细胞内 pH(pH(i))以维持肽吸收的驱动力。顶端膜 Na(+)/H(+)交换器 Nhe3 在 H(+)-二肽/三肽吸收过程中减少上皮酸化方面起着主要作用。然而,HCO(3)(-)依赖性转运体对该过程的贡献尚未阐明。在这项研究中,我们研究了假定的阴离子转运体-1(Pat-1)在 H(+)-肽吸收过程中上皮细胞 pH(i)调节中的作用,Pat-1 是一种顶端膜阴离子交换器。使用野生型(WT)和 Pat-1(-) 小鼠,采用 Ussing 室测量与 Pept1 介导的甘氨酰-肌氨酸(Gly-Sar)吸收相关的短路电流(I(sc))。微荧光计用于测量上绒毛上皮的 pH(i)和 Cl(-)/HCO(3)(-)交换。在 CO(2)/HCO(3)(-)缓冲的 Ringers 中,WT 小肠在 Nhe3 活性的药理学抑制下显示出显著的 Gly-Sar 诱导的 I(sc)和有效的 pH(i)调节。相比之下,在 Cl(-)/HCO(3)(-)交换的药理学抑制下和 Pat-1(-)肠中,上皮酸化和减少对 Gly-Sar 暴露的 I(sc)反应发生。Pat-1 与碳酸酐酶 II(CAII)相互作用,并且使用 CAII(-)肠或 WT 肠的药理学抑制剂甲唑胺的研究导致 Gly-Sar 暴露期间上皮酸化增加。在 Gly-Sar 暴露期间,WT 肠中的上皮酸化也在腔外细胞外 CA 活性抑制期间发生。在存在 Gly-Sar 的情况下测量 Cl(-)/HCO(3)(-)交换显示出 Cl(-)(OUT)/HCO(3)(-)(IN)交换率的增加,该交换率既依赖于 Pat-1 也依赖于 CA。总之,Pat-1 Cl(-)/HCO(3)(-)交换有助于 H(+)-二肽吸收过程中绒毛上皮的 pH(i)调节,可能通过提供 HCO(3)(-) 导入途径。