Suppr超能文献

细胞表面蛋白和核标志物的多维分析。

Multidimensional profiling of cell surface proteins and nuclear markers.

机构信息

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):80-90. doi: 10.1109/TCBB.2008.134.

Abstract

Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to 1) delineate cell membrane protein signals and associate them with a specific nucleus; 2) compute a coupled representation of the multiplexed DNA content with membrane proteins; 3) rank computed features associated with such a multidimensional representation; 4) visualize selected features for comparative evaluation through heatmaps; and 5) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

摘要

细胞膜蛋白在组织架构和细胞间通讯中发挥着重要作用。我们假设对细胞膜蛋白分布进行分割和多维特征化,逐个细胞进行分析,能够改善处理组的分类,并识别出可能隐藏的重要特征。我们开发了一系列计算步骤来:1)描绘细胞膜蛋白信号,并将其与特定细胞核相关联;2)计算膜蛋白与多路复用 DNA 含量的耦合表示;3)对与这种多维表示相关的计算特征进行排序;4)通过热图可视化选定特征,进行比较评估;5)以最佳方式区分处理组。我们的方法的新颖之处在于逐个细胞对膜信号进行分割和对表型特征进行多维表示。为了测试该方法的实用性,我们将所提出的计算步骤应用于已经用不同辐射质量照射的细胞的图像,以及在存在和不存在其他小分子的情况下。这些样本被标记为其 DNA 含量和 E-钙粘蛋白细胞膜蛋白。我们证明了逐个细胞表型的多维表示提高了不同处理组之间的预测和可视化能力,并识别出隐藏变量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验