Suppr超能文献

通过投票和多相水平集对细胞核和膜结合大分子进行联合分割

Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set.

作者信息

Chang Hang, Wen Quan, Parvin Bahram

机构信息

Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

School of Computer Science & Engineering, University of Electronic Science & Technology of China.

出版信息

Pattern Recognit. 2015 Mar 1;48(3):882-893. doi: 10.1016/j.patcog.2014.10.005.

Abstract

Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance.

摘要

膜结合大分子在组织结构和细胞间通讯中发挥着重要作用,并且受近三分之一的基因组调控。在光学尺度上,一组膜蛋白沿细胞表面边界呈线性结构表达,而其他膜蛋白则被隔离;本文针对的是前一组膜蛋白。逐细胞分割这些膜蛋白能够对定位进行定量评估以进行比较分析。然而,此类膜蛋白通常缺乏连续性,其强度分布往往非常不均匀;此外,细胞核会形成大的团块,这进一步阻碍了逐细胞对膜信号的量化。为了解决这些问题,我们引入了一个三步流程:(i)通过迭代切向投票来规范膜信号,(ii)利用核特征来约束表面蛋白的位置,其中通过德劳内三角剖分方法分割细胞核团块,以及(iii)通过应用多相测地线水平集将膜结合大分子分配到单个细胞。我们使用合成数据和一个包含200张图像的数据集验证了我们的方法,并且能够通过卓越的性能证明我们方法的有效性。

相似文献

7
Segmentation of cell clumps for quantitative analysis.用于定量分析的细胞团块分割
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4813-6. doi: 10.1109/IEMBS.2010.5628032.
10
Renal compartment segmentation in DCE-MRI images.DCE-MRI 图像的肾实质分割。
Med Image Anal. 2016 Aug;32:269-80. doi: 10.1016/j.media.2016.05.006. Epub 2016 May 16.

本文引用的文献

5
Automated segmentation of cells with IHC membrane staining.免疫组织化学膜染色的细胞自动分割。
IEEE Trans Biomed Eng. 2011 May;58(5):1421-9. doi: 10.1109/TBME.2011.2106499. Epub 2011 Jan 17.
7
Multidimensional profiling of cell surface proteins and nuclear markers.细胞表面蛋白和核标志物的多维分析。
IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):80-90. doi: 10.1109/TCBB.2008.134.
10
Active mask segmentation of fluorescence microscope images.荧光显微镜图像的主动掩码分割
IEEE Trans Image Process. 2009 Aug;18(8):1817-29. doi: 10.1109/TIP.2009.2021081. Epub 2009 Apr 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验