RoyChoudhury Arindam
Department of Biostatistics, Columbia University, New York, NY 10032, USA.
J Math Biol. 2011 Jan;62(1):65-80. doi: 10.1007/s00285-010-0329-9. Epub 2010 Feb 12.
The structure of dependence between neighboring genetic loci is intractable under some models that treat each locus as a single data-point. Composite likelihood-based methods present a simple approach under such models by treating the data as if they are independent. A maximum composite likelihood estimator (MCLE) is not easy to find numerically, as in most cases we do not have a way of knowing if a maximum is global. We study the local maxima of the composite likelihood (ECLE, the efficient composite likelihood estimators), which is straightforward to compute. We establish desirable properties of the ECLE and provide an estimator of the variance of MCLE and ECLE. We also modify two proper likelihood-based tests to be used with composite likelihood. We modify our methods to make them applicable to datasets where some loci are excluded.
在某些将每个基因座视为单个数据点的模型下,相邻基因座之间的依赖结构难以处理。基于复合似然的方法在此类模型下提供了一种简单的方法,即把数据当作独立数据来处理。最大复合似然估计器(MCLE)在数值上不容易找到,因为在大多数情况下我们无法知道最大值是否是全局的。我们研究复合似然的局部最大值(ECLE,有效复合似然估计器),它很容易计算。我们建立了ECLE的理想性质,并提供了MCLE和ECLE方差的估计器。我们还修改了两个基于适当似然的检验以用于复合似然。我们修改我们的方法使其适用于某些基因座被排除的数据集。