Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
Genome Res. 2010 Jan;20(1):101-9. doi: 10.1101/gr.097543.109. Epub 2009 Dec 1.
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate theta = 4N(e)micro, population exponential growth rate R, and error rate epsilon, simultaneously. Using simulation, we show the combined effects of the parameters, theta, n, epsilon, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of theta with other theta estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals.
据了解,测序错误会影响进化或群体遗传参数的估计。在深度重测序研究中,由于样本量 n 较大,每个核苷酸位点出错的概率更高,因此这个问题更为突出。我们提出了一种新的方法,基于观察到的 SNP 构型的复合似然,同时推断群体突变率 theta = 4N(e)micro、群体指数增长率 R 和错误率 epsilon。通过模拟,我们展示了参数 theta、n、epsilon 和 R 的综合效应,以及它们对参数估计准确性的影响。我们比较了我们的最大复合似然估计器(MCLE)与其他考虑错误的 theta 估计器。结果表明,当样本量较大或错误率较高时,MCLE 表现良好。通过参数 bootstrap,复合似然也可以用作检验观测 DNA 序列模型拟合优度的统计量。MCLE 方法应用于 1832 名非裔美国人和 1045 名欧洲裔美国人的 ANGPTL4 基因序列数据。