Coffman Alec J, Hsieh Ping Hsun, Gravel Simon, Gutenkunst Ryan N
Department of Molecular and Cellular Biology, University of Arizona.
Department of Ecology and Evolutionary Biology, University of Arizona.
Mol Biol Evol. 2016 Feb;33(2):591-3. doi: 10.1093/molbev/msv255. Epub 2015 Nov 5.
Many population genetics tools employ composite likelihoods, because fully modeling genomic linkage is challenging. But traditional approaches to estimating parameter uncertainties and performing model selection require full likelihoods, so these tools have relied on computationally expensive maximum-likelihood estimation (MLE) on bootstrapped data. Here, we demonstrate that statistical theory can be applied to adjust composite likelihoods and perform robust computationally efficient statistical inference in two demographic inference tools: ∂a∂i and TRACTS. On both simulated and real data, the adjustments perform comparably to MLE bootstrapping while using orders of magnitude less computational time.
许多群体遗传学工具采用复合似然法,因为对基因组连锁进行完全建模具有挑战性。但是,估计参数不确定性和进行模型选择的传统方法需要完全似然法,因此这些工具依赖于对自抽样数据进行计算成本高昂的最大似然估计(MLE)。在这里,我们证明统计理论可用于调整复合似然法,并在两种人口统计推断工具:∂a∂i和TRACTS中进行稳健的、计算效率高的统计推断。在模拟数据和真实数据上,这些调整的性能与MLE自抽样相当,同时使用的计算时间要少几个数量级。