Suppr超能文献

小鼠视交叉上核胃泌素释放肽细胞的特化。

Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus.

机构信息

Institut Nationale de la Santé et de la Recherche Médicale (INSERM), U846, Stem Cell and Brain Research Institute, Department of Chronobiology, F-69500, Bron, France.

出版信息

J Comp Neurol. 2010 Apr 15;518(8):1249-63. doi: 10.1002/cne.22272.

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus regulates daily rhythms in physiology and behavior. It is composed of a heterogeneous population of cells that together form the circuits underlying its master clock function. Numerous studies suggest the existence of two regions that have been termed core and shell. At a gross level, differences between these regions map to distinct functional differences, although the specific role(s) of various peptidergic cellular phenotypes remains unknown. In mouse, gastrin-releasing peptide (GRP) cells lie in the core, are directly retinorecipient, and lack detectable rhythmicity in clock gene expression, raising interest in their role in the SCN. Here, we provide evidence that calbindin-expressing cells of perinatal mouse SCN express GRP, identified by a green fluorescent protein (GFP+), but lack detectable calbindin later in development. To explore the intra-SCN network in which GRP neurons participate, individual GFP+ cells were filled with tracer and their morphological characteristics, processes, and connections, as well as those of their non-GFP-containing immediate neighbors, were compared. The results show that GFP+ neurons form a dense network of local circuits within the core, revealed by appositions on other GFP+ cells and by the presence of dye-coupled cells. Dendrites and axons of GFP+ cells make appositions on arginine vasopressin neurons, whereas non-GFP cells have a less extensive fiber network, largely confined to the region of GFP+ cells. The results point to specialized circuitry within the SCN, presumably supporting synchronization of neural activity and reciprocal communication between core and shell regions.

摘要

视交叉上核(SCN)调节生理和行为的日常节律。它由异质细胞组成,共同形成其主时钟功能的回路。许多研究表明存在两个区域,它们被称为核心和壳。在大体水平上,这些区域之间的差异映射到明显的功能差异,尽管各种肽能细胞表型的具体作用仍不清楚。在小鼠中,胃泌素释放肽(GRP)细胞位于核心,直接接受视网膜输入,并且时钟基因表达中缺乏可检测的节律性,这引起了人们对其在 SCN 中作用的兴趣。在这里,我们提供了证据表明,围产期小鼠 SCN 的 calbindin 表达细胞表达 GRP,通过绿色荧光蛋白(GFP+)鉴定,但在发育后期缺乏可检测的 calbindin。为了探索 GRP 神经元参与的 SCN 内网络,用示踪剂填充单个 GFP+细胞,并比较其形态特征、过程和连接,以及其非 GFP 包含的直接相邻细胞的特征。结果表明,GFP+神经元在核心内形成了一个密集的局部回路网络,通过与其他 GFP+细胞的接触和存在偶联的细胞来揭示。GFP+细胞的树突和轴突与精氨酸加压素神经元接触,而非 GFP 细胞的纤维网络较少,主要局限于 GFP+细胞区域。结果表明 SCN 内存在专门的回路,可能支持神经活动的同步和核心与壳区之间的相互通讯。

相似文献

1
Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus.
J Comp Neurol. 2010 Apr 15;518(8):1249-63. doi: 10.1002/cne.22272.
3
Circadian trafficking of calbindin-ir in fibers of SCN neurons.
J Biol Rhythms. 2009 Dec;24(6):488-96. doi: 10.1177/0748730409350876.
4
Selective Distribution of Retinal Input to Mouse SCN Revealed in Analysis of Sagittal Sections.
J Biol Rhythms. 2015 Jun;30(3):251-7. doi: 10.1177/0748730415584058.
5
Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus.
J Neurosci. 2004 Jan 7;24(1):68-75. doi: 10.1523/JNEUROSCI.1666-03.2004.
6
Calbindin-D(28K) cells selectively contact intra-SCN neurons.
Neuroscience. 2002;111(3):575-85. doi: 10.1016/s0306-4522(01)00604-2.
7
Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus.
Brain Res Dev Brain Res. 2005 Jun 9;157(1):8-18. doi: 10.1016/j.devbrainres.2005.02.017. Epub 2005 Apr 9.
8
The substructure of the suprachiasmatic nucleus: Similarities between nocturnal and diurnal spiny mice.
Brain Behav Evol. 2010;75(1):9-22. doi: 10.1159/000282172. Epub 2010 Feb 5.
9
Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship.
eNeuro. 2018 Oct 2;5(5). doi: 10.1523/ENEURO.0205-18.2018. eCollection 2018 Sep-Oct.
10
Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections.
Brain Res. 2001 Oct 19;916(1-2):172-91. doi: 10.1016/s0006-8993(01)02890-6.

引用本文的文献

1
Suprachiasmatic nucleus-wide estimation of oscillatory temporal dynamics.
PLoS Comput Biol. 2025 Mar 6;21(3):e1012855. doi: 10.1371/journal.pcbi.1012855. eCollection 2025 Mar.
3
Arginine Vasopressin-Containing Neurons of the Suprachiasmatic Nucleus Project to CSF.
eNeuro. 2021 Apr 16;8(2). doi: 10.1523/ENEURO.0363-20.2021. Print 2021 Mar-Apr.
4
Circuit development in the master clock network of mammals.
Eur J Neurosci. 2020 Jan;51(1):82-108. doi: 10.1111/ejn.14259. Epub 2018 Dec 5.
5
Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship.
eNeuro. 2018 Oct 2;5(5). doi: 10.1523/ENEURO.0205-18.2018. eCollection 2018 Sep-Oct.
6
Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus.
J Biol Rhythms. 2017 Jun;32(3):222-236. doi: 10.1177/0748730417704766. Epub 2017 May 29.
7
Membrane Currents, Gene Expression, and Circadian Clocks.
Cold Spring Harb Perspect Biol. 2017 May 1;9(5):a027714. doi: 10.1101/cshperspect.a027714.
8
Collective timekeeping among cells of the master circadian clock.
J Endocrinol. 2016 Jul;230(1):R27-49. doi: 10.1530/JOE-16-0054. Epub 2016 May 6.

本文引用的文献

1
Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment.
Eur J Neurosci. 2008 Jun;27(11):2907-21. doi: 10.1111/j.1460-9568.2008.06239.x.
2
Exploring spatiotemporal organization of SCN circuits.
Cold Spring Harb Symp Quant Biol. 2007;72:527-41. doi: 10.1101/sqb.2007.72.037.
4
A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus.
Endocrinology. 2007 Nov;148(11):5487-95. doi: 10.1210/en.2007-0775. Epub 2007 Aug 16.
5
Gates and oscillators II: zeitgebers and the network model of the brain clock.
J Biol Rhythms. 2007 Feb;22(1):14-25. doi: 10.1177/0748730406296319.
6
Glutamatergic activity modulates the phase-shifting effects of gastrin-releasing peptide and light.
Eur J Neurosci. 2006 Nov;24(10):2853-8. doi: 10.1111/j.1460-9568.2006.05165.x.
8
Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock.
Eur J Neurosci. 2006 Feb;23(4):1047-53. doi: 10.1111/j.1460-9568.2006.04633.x.
9
Dendritic peptide release and peptide-dependent behaviours.
Nat Rev Neurosci. 2006 Feb;7(2):126-36. doi: 10.1038/nrn1845.
10
The circadian visual system, 2005.
Brain Res Rev. 2006 Jun;51(1):1-60. doi: 10.1016/j.brainresrev.2005.08.003. Epub 2005 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验