Suppr超能文献

探索视交叉上核(SCN)回路的时空组织。

Exploring spatiotemporal organization of SCN circuits.

作者信息

Yan L, Karatsoreos I, Lesauter J, Welsh D K, Kay S, Foley D, Silver R

机构信息

Department of Psychology, Columbia University, New York, New York 10027, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2007;72:527-41. doi: 10.1101/sqb.2007.72.037.

Abstract

Suprachiasmatic nucleus (SCN) neuroanatomy has been a subject of intense interest since the discovery of the SCN's function as a brain clock and subsequent studies revealing substantial heterogeneity of its component neurons. Understanding the network organization of the SCN has become increasingly relevant in the context of studies showing that its functional circuitry, evident in the spatial and temporal expression of clock genes, can be reorganized by inputs from the internal and external environment. Although multiple mechanisms have been proposed for coupling among SCN neurons, relatively little is known of the precise pattern of SCN circuitry. To explore SCN networks, we examine responses of the SCN to various photic conditions, using in vivo and in vitro studies with associated mathematical modeling to study spatiotemporal changes in SCN activity. We find an orderly and reproducible spatiotemporal pattern of oscillatory gene expression in the SCN, which requires the presence of the ventrolateral core region. Without the SCN core region, behavioral rhythmicity is abolished in vivo, whereas low-amplitude rhythmicity can be detected in SCN slices in vitro, but with loss of normal topographic organization. These studies reveal SCN circuit properties required to signal daily time.

摘要

自视交叉上核(SCN)作为脑时钟的功能被发现,以及随后的研究揭示其组成神经元存在显著异质性以来,SCN的神经解剖学一直是人们高度关注的课题。在一些研究表明其功能电路(在时钟基因的时空表达中明显可见)可被来自内部和外部环境的输入重新组织的背景下,了解SCN的网络组织变得越来越重要。尽管已经提出了多种SCN神经元之间耦合的机制,但对于SCN电路的精确模式了解相对较少。为了探索SCN网络,我们使用体内和体外研究以及相关的数学模型来研究SCN活动的时空变化,从而检查SCN对各种光照条件的反应。我们在SCN中发现了一种有序且可重复的振荡基因表达的时空模式,这需要腹外侧核心区域的存在。没有SCN核心区域,体内的行为节律就会消失,而在体外的SCN切片中可以检测到低振幅节律,但正常的拓扑组织会丧失。这些研究揭示了SCN中用于指示每日时间的电路特性。

相似文献

1
Exploring spatiotemporal organization of SCN circuits.
Cold Spring Harb Symp Quant Biol. 2007;72:527-41. doi: 10.1101/sqb.2007.72.037.
2
Suprachiasmatic nucleus: cell autonomy and network properties.
Annu Rev Physiol. 2010;72:551-77. doi: 10.1146/annurev-physiol-021909-135919.
4
Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.
Eur J Neurosci. 2010 Dec;32(12):2143-51. doi: 10.1111/j.1460-9568.2010.07522.x.
8
Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
J Biol Rhythms. 2014 Feb;29(1):4-15. doi: 10.1177/0748730413516750.
9
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
eNeuro. 2017 Aug 18;4(4). doi: 10.1523/ENEURO.0160-17.2017. eCollection 2017 Jul-Aug.
10
Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3657-62. doi: 10.1073/pnas.1511351113. Epub 2016 Mar 10.

引用本文的文献

1
Voluntary Running and Estrous Cycle Modulate ΔFOSB in the Suprachiasmatic Nucleus of the Wistar Rat.
J Circadian Rhythms. 2025 May 19;23:7. doi: 10.5334/jcr.257. eCollection 2025.
2
Suprachiasmatic nucleus-wide estimation of oscillatory temporal dynamics.
PLoS Comput Biol. 2025 Mar 6;21(3):e1012855. doi: 10.1371/journal.pcbi.1012855. eCollection 2025 Mar.
4
Reduced Plasticity in Coupling Strength in the Aging SCN Clock as Revealed by Kuramoto Modeling.
J Biol Rhythms. 2023 Oct;38(5):461-475. doi: 10.1177/07487304231175191. Epub 2023 Jun 16.
5
Developmental patterning of peptide transcription in the central circadian clock in both sexes.
Front Neurosci. 2023 May 19;17:1177458. doi: 10.3389/fnins.2023.1177458. eCollection 2023.
6
A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus.
Nat Commun. 2023 Mar 17;14(1):1492. doi: 10.1038/s41467-023-36955-6.
7
Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis.
Front Endocrinol (Lausanne). 2022 Oct 27;13:960351. doi: 10.3389/fendo.2022.960351. eCollection 2022.
8
Deviant circadian rhythmicity, corticosterone variability and trait testosterone levels in aggressive mice.
Eur J Neurosci. 2022 Mar;55(6):1492-1503. doi: 10.1111/ejn.15632. Epub 2022 Mar 8.
9
Circadian Synchrony: Sleep, Nutrition, and Physical Activity.
Front Netw Physiol. 2021 Oct;1. doi: 10.3389/fnetp.2021.732243. Epub 2021 Oct 12.

本文引用的文献

1
A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus.
Endocrinology. 2007 Nov;148(11):5487-95. doi: 10.1210/en.2007-0775. Epub 2007 Aug 16.
2
Intercellular coupling confers robustness against mutations in the SCN circadian clock network.
Cell. 2007 May 4;129(3):605-16. doi: 10.1016/j.cell.2007.02.047.
3
Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7664-9. doi: 10.1073/pnas.0607713104. Epub 2007 Apr 26.
4
Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.
PLoS Comput Biol. 2007 Apr 13;3(4):e68. doi: 10.1371/journal.pcbi.0030068. Epub 2007 Feb 27.
5
Seasonal encoding by the circadian pacemaker of the SCN.
Curr Biol. 2007 Mar 6;17(5):468-73. doi: 10.1016/j.cub.2007.01.048. Epub 2007 Feb 22.
7
Gates and oscillators II: zeitgebers and the network model of the brain clock.
J Biol Rhythms. 2007 Feb;22(1):14-25. doi: 10.1177/0748730406296319.
8
Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):648-53. doi: 10.1073/pnas.0606884104. Epub 2007 Jan 3.
9
Distribution of vasopressin in the brain of the eusocial naked mole-rat.
J Comp Neurol. 2007 Feb 20;500(6):1093-105. doi: 10.1002/cne.21215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验