Yan L, Karatsoreos I, Lesauter J, Welsh D K, Kay S, Foley D, Silver R
Department of Psychology, Columbia University, New York, New York 10027, USA.
Cold Spring Harb Symp Quant Biol. 2007;72:527-41. doi: 10.1101/sqb.2007.72.037.
Suprachiasmatic nucleus (SCN) neuroanatomy has been a subject of intense interest since the discovery of the SCN's function as a brain clock and subsequent studies revealing substantial heterogeneity of its component neurons. Understanding the network organization of the SCN has become increasingly relevant in the context of studies showing that its functional circuitry, evident in the spatial and temporal expression of clock genes, can be reorganized by inputs from the internal and external environment. Although multiple mechanisms have been proposed for coupling among SCN neurons, relatively little is known of the precise pattern of SCN circuitry. To explore SCN networks, we examine responses of the SCN to various photic conditions, using in vivo and in vitro studies with associated mathematical modeling to study spatiotemporal changes in SCN activity. We find an orderly and reproducible spatiotemporal pattern of oscillatory gene expression in the SCN, which requires the presence of the ventrolateral core region. Without the SCN core region, behavioral rhythmicity is abolished in vivo, whereas low-amplitude rhythmicity can be detected in SCN slices in vitro, but with loss of normal topographic organization. These studies reveal SCN circuit properties required to signal daily time.
自视交叉上核(SCN)作为脑时钟的功能被发现,以及随后的研究揭示其组成神经元存在显著异质性以来,SCN的神经解剖学一直是人们高度关注的课题。在一些研究表明其功能电路(在时钟基因的时空表达中明显可见)可被来自内部和外部环境的输入重新组织的背景下,了解SCN的网络组织变得越来越重要。尽管已经提出了多种SCN神经元之间耦合的机制,但对于SCN电路的精确模式了解相对较少。为了探索SCN网络,我们使用体内和体外研究以及相关的数学模型来研究SCN活动的时空变化,从而检查SCN对各种光照条件的反应。我们在SCN中发现了一种有序且可重复的振荡基因表达的时空模式,这需要腹外侧核心区域的存在。没有SCN核心区域,体内的行为节律就会消失,而在体外的SCN切片中可以检测到低振幅节律,但正常的拓扑组织会丧失。这些研究揭示了SCN中用于指示每日时间的电路特性。