Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
Anal Chem. 2010 Mar 15;82(6):2456-62. doi: 10.1021/ac902852a.
Analyses of complex mixtures and characterization of ions increasingly involve gas-phase separations by ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) based on the difference of ion mobility in strong and weak electric fields. The key advantage of FAIMS is substantial orthogonality to mass spectrometry (MS), which makes FAIMS/MS hybrid a powerful analytical platform of broad utility. However, the potential of FAIMS has been constrained by limited resolution. Here, we report that the use of gas mixtures comprising up to 75% He dramatically increases the FAIMS separation capability, with the resolving power for peptides and peak capacity for protein digests reaching and exceeding 100. The resolution gains extend to small molecules, where previously unresolved isomers can now be separated. These performance levels open major new applications of FAIMS in proteomic and other biomolecular analyses.
分析复杂混合物和离子表征越来越多地涉及通过离子淌度谱(IMS)进行的气相分离,特别是基于强电场和弱电场中离子淌度差异的差分或场非对称波形 IMS(FAIMS)。FAIMS 的主要优势在于与质谱(MS)具有很大的正交性,这使得 FAIMS/MS 混合成为一种广泛应用的强大分析平台。然而,FAIMS 的潜力受到分辨率有限的限制。在这里,我们报告说,使用包含高达 75%氦气的气体混合物可大大提高 FAIMS 的分离能力,使肽的分辨率和蛋白质消化物的峰容量达到并超过 100。分辨率的提高还扩展到小分子,其中以前无法分辨的异构体现在可以分离。这些性能水平为 FAIMS 在蛋白质组学和其他生物分子分析中的新应用开辟了重要途径。