Suppr超能文献

采用用于无损离子操控的结构的 Serpentine Ultralong Path with Extended Routing (SUPER) 高分辨率行波离子淌度-MS。

Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations.

机构信息

Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Boulevard, P.O. Box 999, MSIN K8-98, Richland, Washington 99352, United States.

出版信息

Anal Chem. 2017 Apr 18;89(8):4628-4634. doi: 10.1021/acs.analchem.7b00185. Epub 2017 Apr 5.

Abstract

Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution often limits their utility. Here, we report on ion mobility separations in a structures for lossless ion manipulations (SLIM) serpentine ultralong path with extended routing (SUPER) traveling wave (TW) ion mobility (IM) module in conjunction with mass spectrometry (MS). Ions were confined in the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths. The extended routing utilized multiple passes (e.g., ∼1094 m over 81 passes through the 13.5 m serpentine path) and was facilitated by the introduction of a lossless ion switch that allowed ions to be directed to either the MS detector or for another pass through the serpentine separation region, allowing theoretically unlimited IM path lengths. The multipass SUPER IM-MS provided resolution approximately proportional to the square root of the number of passes (or total path length). More than 30-fold higher IM resolution (∼340 vs ∼10) for Agilent tuning mix m/z 622 and 922 ions was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars lacto-N-hexaose and lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.

摘要

离子淌度(IM)分离在分析中有广泛的应用,但分辨率不足常常限制了它们的实用性。在这里,我们报告了在结构无损离子操控(SLIM)蛇形超长路径与扩展路由(SUPER)行波(TW)离子淌度(IM)模块中,与质谱(MS)结合的离子淌度分离。离子通过射频场与直流保护偏压限制在 SLIM 中,从而实现了大大扩展路径上几乎无损的 TW 传输。扩展路由利用多次通过(例如,通过 81 次穿过 13.5 米蛇形路径的大约 1094 米),并通过引入无损离子开关来实现,该开关允许离子被引导到 MS 检测器或通过蛇形分离区域的另一次通过,从而允许理论上无限的 IM 路径长度。多通 SUPER IM-MS 提供的分辨率大约与通过次数(或总路径长度)的平方根成正比。与商业上可用的漂移管 IM 和其他基于 TWIM 的平台相比,对于 40 次通过,Agilent 调谐混合 m/z 622 和 922 离子的 IM 分辨率提高了 30 倍以上(约 340 对 10)。对异头糖乳糖-N-六糖和乳糖-N-新六糖的初步评估表明,异构结构得到了基线分离,并且在经过 9 次通过后,乳糖-N-新六糖显示出了新的构象特征。新的 SLIM SUPER 高分辨率 TWIM 平台与 MS 结合具有广泛的用途,并有望实现广泛的以前具有挑战性或难以解决的分离。

相似文献

3
Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations.
Anal Chem. 2019 Nov 19;91(22):14712-14718. doi: 10.1021/acs.analchem.9b03987. Epub 2019 Oct 30.
7
Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations.
Anal Chem. 2016 Sep 20;88(18):8949-8956. doi: 10.1021/acs.analchem.6b01914. Epub 2016 Aug 12.
9
High-resolution ion mobility based on traveling wave structures for lossless ion manipulation resolves hidden lipid features.
Anal Bioanal Chem. 2024 Oct;416(25):5473-5483. doi: 10.1007/s00216-024-05385-8. Epub 2024 Jun 27.

引用本文的文献

1
Advancements in Ion Mobility-Based Diagnostics for Infectious Diseases.
Proteomics. 2025 Jul;25(14):e13976. doi: 10.1002/pmic.13976. Epub 2025 Jun 11.
2
Advanced Mass Spectrometry Techniques for the Characterization of Carbohydrates.
Handb Exp Pharmacol. 2025;288:73-108. doi: 10.1007/164_2025_749.
3
Rapid Stereochemical Analysis of Glycosylations in Flow by Ion Mobility Spectrometry.
Chemistry. 2025 May;31(25):e202500311. doi: 10.1002/chem.202500311. Epub 2025 Mar 30.
4
Rapid and Accurate Identification of Microorganisms Using Ion Mobility-Mass Spectrometry.
Int J Mass Spectrom. 2025 Apr;510. doi: 10.1016/j.ijms.2025.117421. Epub 2025 Feb 15.
6
Gas-Phase Structures of Fucosylated Oligosaccharides: Alkali Metal and Halogen Influences.
J Phys Chem B. 2024 Sep 19;128(37):8869-8877. doi: 10.1021/acs.jpcb.4c02696. Epub 2024 Sep 3.
7
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
8
9
Revealing the Fates of Proteins in the Gas Phase.
Int J Mass Spectrom. 2024 Oct;504. doi: 10.1016/j.ijms.2024.117312. Epub 2024 Jul 30.

本文引用的文献

2
Structural Elucidation of cis/trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry.
J Phys Chem Lett. 2017 Apr 6;8(7):1381-1388. doi: 10.1021/acs.jpclett.6b03015. Epub 2017 Mar 15.
5
Ion mobility separation of deprotonated oligosaccharide isomers - evidence for gas-phase charge migration.
Chem Commun (Camb). 2016 Oct 11;52(83):12353-12356. doi: 10.1039/c6cc06247d.
7
Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations.
Anal Chem. 2016 Sep 20;88(18):8949-8956. doi: 10.1021/acs.analchem.6b01914. Epub 2016 Aug 12.
8
Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.
Anal Chem. 2015 Nov 17;87(22):11301-8. doi: 10.1021/acs.analchem.5b02481. Epub 2015 Oct 28.
9
Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations.
Anal Chem. 2015 Jun 16;87(12):6010-6. doi: 10.1021/acs.analchem.5b00214. Epub 2015 May 26.
10
On an aerodynamic mechanism to enhance ion transmission and sensitivity of FAIMS for nano-electrospray ionization-mass spectrometry.
J Am Soc Mass Spectrom. 2014 Dec;25(12):2143-53. doi: 10.1007/s13361-014-0995-8. Epub 2014 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验