Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India.
J Chem Phys. 2010 Feb 14;132(6):064108. doi: 10.1063/1.3314223.
Conventionally optimal control theory has been used in the theoretical design of laser pulses through the direct variation in the electric field of the laser pulse as a function of time. This often leads to designed laser pulses which contain a broad and seemingly arbitrary frequency structure that varies in time in a manner which may be difficult to realize experimentally. In contrast, the experimental design of laser pulses has used a genetic algorithm (GA) approach, varying only those laser parameters actually available to the experimentalist. We investigate in this paper the possibility of using GA optimization methods in the theoretical design of laser pulses to bring about quantum state transitions in molecules. This allows us to select only a small limited number of parameters to vary and to choose these parameters so that they correspond to those available to the experimentalist. In the paper we apply our methods to the vibrational-rotational excitation of the HF molecule. We choose a small limited number of frequencies and vary only the associated electric field amplitudes and pulse envelopes. We show that laser pulses designed in this way can lead to very high transition probabilities.
传统的最优控制理论已经被用于通过直接改变激光脉冲的电场作为时间的函数来设计激光脉冲。这通常会导致设计的激光脉冲包含一个广泛而看似任意的频率结构,其随时间变化的方式可能难以在实验中实现。相比之下,激光脉冲的实验设计已经使用了遗传算法(GA)方法,只改变实验者实际可用的那些激光参数。我们在本文中研究了在激光脉冲的理论设计中使用 GA 优化方法来实现分子中的量子态跃迁的可能性。这允许我们只选择少数几个要变化的参数,并选择这些参数,使其与实验者可用的参数相对应。在本文中,我们将我们的方法应用于 HF 分子的振动-转动激发。我们选择了少数几个频率,只改变相关的电场幅度和脉冲包络。我们表明,以这种方式设计的激光脉冲可以导致非常高的跃迁概率。