Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA.
J Chem Phys. 2010 Feb 14;132(6):064302. doi: 10.1063/1.3313927.
Results of gas phase reactivity studies on group six transition metal suboxide clusters, Mo(3)O(y) (-), Mo(2)WO(y) (-), MoW(2)O(y) (-), and W(3)O(y) (-) (Mo((3-x))W(x)O(y) (-), x=0-3; y=ca. 3-9) with both D(2)O and CO(2) are reported. Sequential oxidation for the more reduced species, Mo((3-x))W(x)O(y) (-)+D(2)O/CO(2)-->Mo((3-x))W(x)O(y+1) (-)+D(2)/CO, and dissociative addition for certain species, Mo((3-x))W(x)O(y) (-)+D(2)O/CO(2)-->Mo((3-x))W(x)O(y+1)D(2) (-)/Mo((3-x))W(x)O(y+1)CO(-), is evident in the product distributions observed in mass spectrometric measurements. Reactions with D(2)O proceed at a rate that is on the order of 10(2) higher than for CO(2). The pattern of reaction products reveals composition-dependent chemical properties of these group six unary and binary clusters. At the core of this variation is the difference in Mo-O and W-O bond energies, the latter of which is significantly higher. This results in a larger thermodynamic drive to higher oxidation states in clusters with more tungsten atoms. However, addition products for more oxidized W-rich clusters are not observed, while they are observed for the more Mo-rich clusters. This is attributed to the following: In the higher oxides (e.g., y=8), addition reactions require distortion of local metal-oxygen bonding, and will necessarily have higher activation barriers for W-O bonds, since the vibrational potentials will be narrower. The binary (x=1,2) clusters generally show sequential oxidation to higher values of y. This again is attributed to higher W-O bond energy, the result being that stable binary structures have W atoms in higher oxidation states, and Mo centers both in more reduced states and sterically unhindered. The reduced Mo center provides a locus of higher reactivity. An unusual result that is not readily explained is the chemically inert behavior of Mo(3)O(6) (-).
报道了六族过渡金属亚氧化物团簇 Mo(3)O(y)(-)、Mo(2)WO(y)(-)、MoW(2)O(y)(-) 和 W(3)O(y)(-)(Mo((3-x))W(x)O(y)(-), x=0-3;y=ca.3-9)与 D(2)O 和 CO(2) 的气相反应研究结果。对于更还原的物种 Mo((3-x))W(x)O(y)(-)+D(2)O/CO(2)-->Mo((3-x))W(x)O(y+1)(-)+D(2)/CO,观察到顺序氧化,对于某些物种 Mo((3-x))W(x)O(y)(-)+D(2)O/CO(2)-->Mo((3-x))W(x)O(y+1)D(2)(-)/Mo((3-x))W(x)O(y+1)CO(-),观察到离解加成,这在质谱测量中观察到的产物分布中是明显的。与 D(2)O 的反应速率比与 CO(2)的反应速率高 10(2)数量级。反应产物的模式揭示了这些六族一元和二元团簇的组成依赖性化学性质。这种变化的核心是 Mo-O 和 W-O 键能的差异,后者明显更高。这导致了具有更多钨原子的团簇中更高氧化态的更大热力学驱动力。然而,对于更富 W 的氧化态较高的簇,没有观察到加成产物,而对于更富 Mo 的簇,则观察到了加成产物。这归因于以下原因:在较高的氧化物(例如,y=8)中,加成反应需要局部金属-氧键的扭曲,并且对于 W-O 键,必然具有更高的活化能垒,因为振动势能将更窄。二元(x=1,2)团簇通常显示出顺序氧化至更高的 y 值。这再次归因于更高的 W-O 键能,结果是稳定的二元结构具有更高氧化态的 W 原子,而 Mo 中心处于更还原的状态且空间上不受阻碍。还原的 Mo 中心提供了更高反应性的位置。一个不易解释的不寻常结果是 Mo(3)O(6)(-)的化学惰性行为。