Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA.
J Chem Phys. 2010 Aug 7;133(5):054305. doi: 10.1063/1.3463413.
Reactions between molybdenum suboxide cluster anions, Mo(x)O(y)(-) (x=1-4; y < or = 3x), and water (H(2)O and D(2)O) have been studied using mass spectrometric analysis of products formed in a high-pressure, fast-flow reactor. Product distributions vary with the number of metal atoms in the cluster. Within the MoO(y)(-) oxide series, product masses correspond to the addition of one water molecule, as well as a H/D exchange with MoO(4)H(-). Within the Mo(2)O(y)(-) oxide series, product evolution and distribution suggest sequential oxidation via Mo(2)O(y)(-)+H(2)O/D(2)O-->Mo(2)O(y+1)(-)+H(2)/D(2) reactions for y<5, while for Mo(2)O(5)(-), Mo(2)O(6)H(2)/D(2)(-) is produced. Mo(2)O(6)(-) does not appear to be reactive toward water. For the Mo(3)O(y)(-) oxide series, sequential oxidation similarly is suggested for y<5, while Mo(3)O(5)(-) reactions result in Mo(3)O(6)H(2)/D(2)(-) formation. Mo(3)O(6)(-) appears uniquely unreactive. Mo(3)O(7)(-) and Mo(3)O(8)(-) react to form Mo(3)O(8)H(2)/D(2)(-) and Mo(3)O(9)H(2)/D(2)(-), respectively. Lower mass resolution in the Mo(4)O(y)(-) mass range prevents unambiguous mass analysis, but intensity changes in the mass spectra do suggest that sequential oxidation with H(2)/D(2) evolution occurs for y<6, while Mo(4)O(y+1)H(2)/D(2)(-) addition products are formed in Mo(4)O(6)(-) and Mo(4)O(7)(-) reactions with water. The relative rate constants for sequential oxidation and H(2)O/D(2)O addition for the x=2 series were determined. There is no evidence of a kinetic isotope effect when comparing reaction rates of H(2)O with D(2)O, suggesting that the H(2) and D(2) losses from the lower-oxide/hydroxide intermediates are very fast relative to initial reaction complex formation with H(2)O or D(2)O. The rate constants determined here are two times higher than those determined in identical reactions between W(2)O(y)(-)+H(2)O/D(2)O.
钼亚氧化物簇负离子 Mo(x)O(y)(-)(x=1-4;y<=3x)与水(H(2)O 和 D(2)O)之间的反应已通过在高压、快速流动反应器中形成的产物的质谱分析进行了研究。产物分布随簇中金属原子的数量而变化。在 MoO(y)(-)氧化物系列中,产物质量对应于一个水分子的添加,以及 MoO(4)H(-)的 H/D 交换。在 Mo(2)O(y)(-)氧化物系列中,产物的演化和分布表明,对于 y<5,通过 Mo(2)O(y)(-)+H(2)O/D(2)O-->Mo(2)O(y+1)(-)+H(2)/D(2)反应进行连续氧化,而对于 Mo(2)O(5)(-),则生成 Mo(2)O(6)H(2)/D(2)(-)。Mo(2)O(6)(-)似乎对水没有反应活性。对于 Mo(3)O(y)(-)氧化物系列,类似地,对于 y<5,连续氧化也是如此,而 Mo(3)O(5)(-)反应导致 Mo(3)O(6)H(2)/D(2)(-)的形成。Mo(3)O(6)(-)似乎独特地没有反应活性。Mo(3)O(7)(-)和 Mo(3)O(8)(-)反应形成 Mo(3)O(8)H(2)/D(2)(-)和 Mo(3)O(9)H(2)/D(2)(-),分别。在 Mo(4)O(y)(-)质量范围内,较低的质量分辨率阻止了明确的质量分析,但质谱中强度的变化确实表明,对于 y<6,随着 H(2)/D(2)的演化发生连续氧化,而在 Mo(4)O(6)(-)和 Mo(4)O(7)(-)与水的反应中形成 Mo(4)O(y+1)H(2)/D(2)(-)加成产物。确定了 x=2 系列中连续氧化和 H(2)O/D(2)O 添加的相对速率常数。当比较 H(2)O 与 D(2)O 的反应速率时,没有证据表明动力学同位素效应,这表明较低氧化物/氢氧化物中间体中 H(2)和 D(2)的损失相对于初始反应复合物与 H(2)O 或 D(2)O 的形成非常快。这里确定的速率常数比在相同的 W(2)O(y)(-)+H(2)O/D(2)O 反应中确定的速率常数高两倍。