Suppr超能文献

角膜上皮细胞识别高纵横比纳米结构的能力。

The ability of corneal epithelial cells to recognize high aspect ratio nanostructures.

机构信息

Department of Chemical & Biological Engineering, University of Wisconsin, Madison WI 53706, USA.

出版信息

Biomaterials. 2010 May;31(14):4064-72. doi: 10.1016/j.biomaterials.2010.01.101. Epub 2010 Feb 11.

Abstract

The basement membrane of the human corneal epithelium comprises topographic features including fibers, pores, and elevations with feature dimensions on the order of 20-400 nm. Understanding the impact of sub-micron and nanotopography on corneal cell behavior will contribute to our understanding of biomechanical cues and will assist in the design of improved synthetic corneal implants. We utilized well defined ridge and groove wave-like nanostructures (wave ordered structures, WOS) of 60-140 pitches (30-70 nm ridge widths) and 200 nm depths to assess human corneal epithelial cell (HCEC) contact guidance and to establish HCEC contact acuity defined as the lower limit in feature dimensions at which cells respond to biomimetic topographic cues. Results using the WOS substrates demonstrate that HCEC contact acuity is in the range of 60 nm pitch for cells in a serum-free basal medium (EpiLife) and in the range of 90 nm pitch for cells in epithelial medium. To further investigate the influence of HCEC contact acuity in the presence of larger topographic cues, we fabricated 70 nm pitch WOS-overlaid parallel to the top of the ridges of 800-4000 nm pitch. HCEC cultured in epithelial medium demonstrate a significant increase in the percent of cells aligning to 4000 nm pitch topography with WOS-overlay compared to controls (both flat and 70 nm WOS alone) and 4000 nm pitch topography alone. These results highlight the significance of the lower range of basement membrane scale topographic cues on cell response and allow for improved prosthetic design.

摘要

人眼角膜上皮的基底膜具有形貌特征,包括纤维、孔隙和隆起,其特征尺寸约为 20-400nm。了解亚微米和纳米形貌对角膜细胞行为的影响,有助于我们理解生物力学线索,并有助于设计改进的合成角膜植入物。我们利用具有明确形貌的脊和槽波状纳米结构(有序结构波,WOS),其节距为 60-140nm(脊宽 30-70nm),深度为 200nm,以评估人眼角膜上皮细胞(HCEC)的接触导向,并建立 HCEC 接触敏锐度,即细胞对仿生形貌线索做出响应的特征尺寸下限。使用 WOS 基底的结果表明,在无血清基础培养基(EpiLife)中,HCEC 的接触敏锐度范围在 60nm 节距,而在上皮培养基中,接触敏锐度范围在 90nm 节距。为了进一步研究在存在较大形貌线索时 HCEC 接触敏锐度的影响,我们制造了与 800-4000nm 节距脊顶平行的 70nm 节距 WOS 覆盖层。与对照组(包括平面和单独的 70nm WOS)和单独的 4000nm 节距形貌相比,在上皮培养基中培养的 HCEC 显著增加了与 4000nm 节距形貌具有 WOS 覆盖层的细胞对齐的百分比。这些结果突出了基底膜尺度形貌线索的较低范围对细胞反应的重要性,并允许改进假体设计。

相似文献

1
The ability of corneal epithelial cells to recognize high aspect ratio nanostructures.
Biomaterials. 2010 May;31(14):4064-72. doi: 10.1016/j.biomaterials.2010.01.101. Epub 2010 Feb 11.
2
The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography.
Biomaterials. 2006 Jul;27(21):3945-54. doi: 10.1016/j.biomaterials.2006.01.044. Epub 2006 Mar 30.
4
Epithelial contact guidance on well-defined micro- and nanostructured substrates.
J Cell Sci. 2003 May 15;116(Pt 10):1881-92. doi: 10.1242/jcs.00383.
6
Responses of human keratocytes to micro- and nanostructured substrates.
J Biomed Mater Res A. 2004 Dec 1;71(3):369-76. doi: 10.1002/jbm.a.30089.
9
Modulation of human vascular endothelial cell behaviors by nanotopographic cues.
Biomaterials. 2010 Jul;31(20):5418-26. doi: 10.1016/j.biomaterials.2010.03.045. Epub 2010 Apr 18.
10
Micro- and Nanoscale Topographies on Silk Regulate Gene Expression of Human Corneal Epithelial Cells.
Invest Ophthalmol Vis Sci. 2017 Dec 1;58(14):6388-6398. doi: 10.1167/iovs.17-22213.

引用本文的文献

2
Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis.
RSC Adv. 2019 Sep 18;9(50):29463-29473. doi: 10.1039/c9ra04009a. eCollection 2019 Sep 13.
3
A combined physicochemical approach towards human tenocyte phenotype maintenance.
Mater Today Bio. 2021 Sep 10;12:100130. doi: 10.1016/j.mtbio.2021.100130. eCollection 2021 Sep.
4
Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants.
Adv Funct Mater. 2018 Oct 10;28(41). doi: 10.1002/adfm.201804076. Epub 2018 Aug 17.
6
Differential effects of Hsp90 inhibition on corneal cells in vitro and in vivo.
Exp Eye Res. 2021 Jan;202:108362. doi: 10.1016/j.exer.2020.108362. Epub 2020 Nov 18.
7
High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials.
Adv Mater. 2020 Mar;32(9):e1903862. doi: 10.1002/adma.201903862. Epub 2020 Jan 16.
8
Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering.
Bioact Mater. 2019 Oct 25;4:293-302. doi: 10.1016/j.bioactmat.2019.10.001. eCollection 2019 Dec.
9
Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography.
Engineering (Beijing). 2017 Feb;3(1):36-54. doi: 10.1016/J.ENG.2017.01.014. Epub 2017 Feb 21.
10
3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review.
Stem Cell Rev Rep. 2017 Jun;13(3):430-441. doi: 10.1007/s12015-017-9740-6.

本文引用的文献

1
Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength.
Biophys J. 2009 Sep 2;97(5):1313-22. doi: 10.1016/j.bpj.2009.06.021.
3
The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells.
Biomaterials. 2009 Sep;30(27):4695-9. doi: 10.1016/j.biomaterials.2009.05.050. Epub 2009 Jun 17.
4
Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range.
Acta Biomater. 2009 Sep;5(7):2460-6. doi: 10.1016/j.actbio.2009.04.003. Epub 2009 Apr 9.
5
Determining the mechanical properties of human corneal basement membranes with atomic force microscopy.
J Struct Biol. 2009 Jul;167(1):19-24. doi: 10.1016/j.jsb.2009.03.012. Epub 2009 Mar 31.
8
Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia.
EMBO J. 2008 Nov 5;27(21):2829-38. doi: 10.1038/emboj.2008.206. Epub 2008 Oct 9.
9
Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields.
Biomaterials. 2008 May;29(13):2082-95. doi: 10.1016/j.biomaterials.2008.01.015. Epub 2008 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验