Ingram Brian O, Sohlenkamp Christian, Geiger Otto, Raetz Christian R H
Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
Biochim Biophys Acta. 2010 May;1801(5):593-604. doi: 10.1016/j.bbalip.2010.02.001. Epub 2010 Feb 11.
The lipid A of Rhizobium etli, a nitrogen-fixing plant endosymbiont, displays significant structural differences when compared to that of Escherichia coli. An especially striking feature of R. etli lipid A is that it lacks both the 1- and 4'-phosphate groups. The 4'-phosphate moiety of the distal glucosamine unit is replaced with a galacturonic acid residue. The dephosphorylated proximal unit is present as a mixture of the glucosamine hemiacetal and an oxidized 2-aminogluconate derivative. Distinct lipid A phosphatases directed to the 1 or the 4'-positions have been identified previously in extracts of R. etli and Rhizobium leguminosarum. The corresponding structural genes, lpxE and lpxF, respectively, have also been identified. Here, we describe the isolation and characterization of R. etli deletion mutants in each of these phosphatase genes and the construction of a double phosphatase mutant. Mass spectrometry confirmed that the mutant strains completely lacked the wild-type lipid A species and accumulated the expected phosphate-containing derivatives. Moreover, radiochemical analysis revealed that phosphatase activity was absent in membranes prepared from the mutants. Our results indicate that LpxE and LpxF are solely responsible for selectively dephosphorylating the lipid A molecules of R. etli. All the mutant strains showed an increased sensitivity to polymyxin relative to the wild-type. However, despite the presence of altered lipid A species containing one or both phosphate groups, all the phosphatase mutants formed nitrogen-fixing nodules on Phaseolus vulgaris. Therefore, the dephosphorylation of lipid A molecules in R. etli is not required for nodulation but may instead play a role in protecting the bacteria from cationic antimicrobial peptides or other immune responses of plants.
根瘤菌(Rhizobium etli)是一种能固氮的植物内共生菌,与大肠杆菌(Escherichia coli)相比,其脂多糖A在结构上存在显著差异。根瘤菌脂多糖A的一个特别显著的特征是它既缺乏1-磷酸基团,也缺乏4'-磷酸基团。远端葡糖胺单元的4'-磷酸部分被半乳糖醛酸残基取代。去磷酸化的近端单元以葡糖胺半缩醛和氧化的2-氨基葡糖酸衍生物的混合物形式存在。先前已在根瘤菌和豆科根瘤菌提取物中鉴定出分别作用于1位或4'-位的不同脂多糖A磷酸酶。相应的结构基因,分别为lpxE和lpxF,也已被鉴定出来。在此,我们描述了这些磷酸酶基因中每个基因的根瘤菌缺失突变体的分离和表征,以及双磷酸酶突变体的构建。质谱分析证实,突变菌株完全缺乏野生型脂多糖A种类,并积累了预期的含磷酸衍生物。此外,放射化学分析表明,突变体制备的膜中不存在磷酸酶活性。我们的结果表明,LpxE和LpxF单独负责选择性地使根瘤菌的脂多糖A分子去磷酸化。所有突变菌株相对于野生型对多粘菌素的敏感性都有所增加。然而,尽管存在含有一个或两个磷酸基团的改变的脂多糖A种类,但所有磷酸酶突变体都能在菜豆上形成固氮根瘤。因此,根瘤菌中脂多糖A分子的去磷酸化对于结瘤不是必需的,反而可能在保护细菌免受阳离子抗菌肽或植物的其他免疫反应方面发挥作用。