Suppr超能文献

位置特异性二次酰化决定了小鼠 TLR4 和 Caspase-11 对脂 A 的检测。

Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11.

机构信息

Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA.

Department of Pathobiology, University of Pennsylvaniagrid.25879.31 School of Veterinary Medicine, Philadelphia, Pennsylvania, USA.

出版信息

Infect Immun. 2022 Aug 18;90(8):e0020122. doi: 10.1128/iai.00201-22. Epub 2022 Jul 14.

Abstract

Immune sensing of the Gram-negative bacterial membrane glycolipid lipopolysaccharide (LPS) is both a critical component of host defense against bacterial infection and a contributor to the hyperinflammatory response, potentially leading to sepsis and death. Innate immune activation by LPS is due to the lipid A moiety, an acylated di-glucosamine molecule that can activate inflammatory responses via the extracellular sensor Toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) or the cytosolic sensor caspase-11 (Casp11). The number and length of acyl chains present on bacterial lipid A structures vary across bacterial species and strains, which affects the magnitude of TLR4 and Casp11 activation. TLR4 and Casp11 are thought to respond similarly to various lipid A structures, as tetra-acylated lipid A structures do not activate either sensor, whereas hexa-acylated structures activate both sensors. However, the precise features of lipid A that determine the differential activation of each receptor remain poorly defined, as direct analysis of extracellular and cytosolic responses to the same sources and preparations of LPS/lipid A structures have been limited. To address this question, we used rationally engineered lipid A isolated from a series of bacterial acyl-transferase mutants that produce novel, structurally defined molecules. Intriguingly, we found that the location of specific secondary acyl chains on lipid A resulted in differential recognition by TLR4 or Casp11, providing new insight into the structural features of lipid A required to activate either TLR4 or Casp11. Our findings indicate that TLR4 and Casp11 sense nonoverlapping areas of lipid A chemical space, thereby constraining the ability of Gram-negative pathogens to evade innate immunity.

摘要

革兰氏阴性细菌膜糖脂脂多糖(LPS)的免疫感应既是宿主防御细菌感染的关键组成部分,也是导致过度炎症反应的原因之一,这可能导致败血症和死亡。LPS 引起的先天免疫激活是由于脂质 A 部分,即酰化二葡萄糖胺分子,它可以通过细胞外传感器 Toll 样受体 4(TLR4)/髓样分化 2(MD2)或细胞溶质传感器半胱天冬酶 11(Casp11)激活炎症反应。细菌脂质 A 结构上存在的酰基链数量和长度因细菌种类和菌株而异,这会影响 TLR4 和 Casp11 的激活程度。TLR4 和 Casp11 被认为对各种脂质 A 结构的反应相似,因为四酰化脂质 A 结构不会激活任何传感器,而六酰化结构则激活两个传感器。然而,决定每个受体差异激活的脂质 A 的精确特征仍未明确定义,因为直接分析细胞外和细胞内对相同来源和 LPS/脂质 A 结构制剂的反应受到限制。为了解决这个问题,我们使用了从一系列细菌酰基转移酶突变体中分离的合理设计的脂质 A,这些突变体产生了新型的、结构明确的分子。有趣的是,我们发现脂质 A 上特定的二级酰基链的位置导致 TLR4 或 Casp11 的差异识别,这为激活 TLR4 或 Casp11 所需的脂质 A 结构特征提供了新的见解。我们的研究结果表明,TLR4 和 Casp11 感知脂质 A 化学空间的非重叠区域,从而限制了革兰氏阴性病原体逃避先天免疫的能力。

相似文献

1
Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11.
Infect Immun. 2022 Aug 18;90(8):e0020122. doi: 10.1128/iai.00201-22. Epub 2022 Jul 14.
3
Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways.
Front Immunol. 2020 Nov 27;11:585146. doi: 10.3389/fimmu.2020.585146. eCollection 2020.
5
Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces.
J Biol Chem. 2015 May 22;290(21):13440-53. doi: 10.1074/jbc.M115.653881. Epub 2015 Apr 2.
6
Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.
PLoS Pathog. 2012;8(10):e1002963. doi: 10.1371/journal.ppat.1002963. Epub 2012 Oct 11.
8
Influence of lipid A acylation pattern on membrane permeability and innate immune stimulation.
Mar Drugs. 2013 Aug 26;11(9):3197-208. doi: 10.3390/md11093197.
10
Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.
Science. 2013 Sep 13;341(6151):1250-3. doi: 10.1126/science.1240988.

引用本文的文献

1
A critical role for LPS to mediate evasion of host immune response during infection.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2426547122. doi: 10.1073/pnas.2426547122. Epub 2025 Aug 13.
2
Immune profile diversity is achieved with synthetic TLR4 agonists combined with the RG1-VLP vaccine in mice.
Vaccine. 2025 Jan 12;44:126577. doi: 10.1016/j.vaccine.2024.126577. Epub 2024 Dec 3.
4
Lipid A Structural Variants Induce Altered Immune Responses.
Am J Respir Cell Mol Biol. 2024 Aug;71(2):207-218. doi: 10.1165/rcmb.2024-0059OC.
5
Strategies of bacterial detection by inflammasomes.
Cell Chem Biol. 2024 May 16;31(5):835-850. doi: 10.1016/j.chembiol.2024.03.009. Epub 2024 Apr 17.
7
Type III-Secreted Effectors Evade the Caspase-4 Inflammasome in Human Cells.
bioRxiv. 2023 Jun 16:2023.01.24.525473. doi: 10.1101/2023.01.24.525473.

本文引用的文献

2
Genetic targeting of Card19 is linked to disrupted NINJ1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection.
PLoS Pathog. 2021 Oct 14;17(10):e1009967. doi: 10.1371/journal.ppat.1009967. eCollection 2021 Oct.
3
4
Deep-sea microbes as tools to refine the rules of innate immune pattern recognition.
Sci Immunol. 2021 Mar 12;6(57). doi: 10.1126/sciimmunol.abe0531.
5
Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria.
Nat Commun. 2020 Jun 24;11(1):3276. doi: 10.1038/s41467-020-16889-z.
6
Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms.
Nat Immunol. 2020 Aug;21(8):880-891. doi: 10.1038/s41590-020-0697-2. Epub 2020 Jun 15.
9
Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation.
J Exp Med. 2018 Sep 3;215(9):2279-2288. doi: 10.1084/jem.20180589. Epub 2018 Aug 22.
10
Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis.
Cell Host Microbe. 2018 Jul 11;24(1):97-108.e4. doi: 10.1016/j.chom.2018.05.009. Epub 2018 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验