Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA.
J Bacteriol. 2010 Jun;192(12):3011-23. doi: 10.1128/JB.01571-09. Epub 2010 Feb 12.
Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (P(i)) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In P(i)-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation.
二核苷酸四磷酸盐是细胞的常见成分,据认为在从细菌到人类的生物体中发挥着多种生物学作用。在这项研究中,我们描述了二腺苷四磷酸(Ap4A)代谢影响荧光假单胞菌生物膜形成的两种独立机制。编码核苷四磷酸水解酶的 apaH 基因的缺失突变导致 Ap4A 的细胞水平显着增加。与此增加同时,在低无机磷(P(i))条件下 Pho 调节子的激活受到严重损害。因此,apaH 突变体对 Pho 调节子依赖性生物膜形成抑制不敏感。此外,我们还描述了 Ap4A 代谢在调节生物膜形成中的 Pho 独立作用。在 P(i)充足的条件下,发现 Ap4A 代谢会影响 LapA 的表达和定位,LapA 是调节荧光假单胞菌表面承诺的主要粘附素。在 apaH 突变体中 c-di-GMP 水平的增加提供了一个可能的解释,即 Ap4A 浓度升高导致 LapA 向外膜的定位增加。apaH 突变体中 c-di-GMP 水平的增加与 GTP 水平的增加相关,表明 Ap4A 水平的升高可能促进新嘌呤生物合成。为了支持这一建议,用腺嘌呤进行补充可以部分抑制 apaH 突变体的生物膜和 c-di-GMP 表型。我们假设,通过改变核苷酸生物合成途径的通量来改变底物(GTP)浓度可能是 c-di-GMP 生物合成和生物膜形成调节的重要调控点。