Suppr超能文献

铜绿假单胞菌PA14对生物膜形成和群体游动的反向调控

Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14.

作者信息

Caiazza Nicky C, Merritt Judith H, Brothers Kimberly M, O'Toole George A

机构信息

Dept. of Microbiology & Immunology, Rm. 505, Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA.

出版信息

J Bacteriol. 2007 May;189(9):3603-12. doi: 10.1128/JB.01685-06. Epub 2007 Mar 2.

Abstract

We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). Mutational analyses of two components of the CheIV cluster, the methyl-accepting chemotaxis protein PilJ and the PilJ demethylase ChpB, support a model wherein this chemotaxis cluster participates in the inverse regulation of biofilm formation and swarming motility. Epistasis analysis indicates that SadB functions upstream of the CheIV cluster. We propose that P. aeruginosa utilizes a SadB-dependent, chemotaxis-like regulatory pathway to inversely regulate two key surface behaviors, biofilm formation and swarming motility.

摘要

我们之前报道过,SadB是一种功能未知的蛋白质,它是机会致病菌铜绿假单胞菌生物膜形成早期步骤所必需的。在此我们报道,与野生型菌株相比,sadB突变也会导致群体游动增加。我们的数据与一个模型相符,即SadB通过其以黏度依赖方式调节鞭毛反转以及影响Pel胞外多糖产生的能力,反向调节生物膜形成和群体游动。我们还表明,SadB需要通过趋化性IV簇(CheIV簇)来适当调节鞭毛反转速率。对CheIV簇的两个组分,即甲基接受趋化蛋白PilJ和PilJ去甲基化酶ChpB的突变分析,支持了这样一个模型,即该趋化簇参与生物膜形成和群体游动的反向调节。上位性分析表明,SadB在CheIV簇的上游起作用。我们提出,铜绿假单胞菌利用一种依赖SadB的、类似趋化性的调控途径来反向调节两种关键的表面行为,即生物膜形成和群体游动。

相似文献

1
Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14.
J Bacteriol. 2007 May;189(9):3603-12. doi: 10.1128/JB.01685-06. Epub 2007 Mar 2.
4
Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2014 Nov;80(21):6724-32. doi: 10.1128/AEM.01237-14. Epub 2014 Aug 29.
6
The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation.
Microbiology (Reading). 2005 Mar;151(Pt 3):985-997. doi: 10.1099/mic.0.27410-0.
7
PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1.
J Basic Microbiol. 2014 Jul;54(7):633-43. doi: 10.1002/jobm.201300091. Epub 2013 Aug 29.

引用本文的文献

1
Multidrug Resistance and Virulence Traits of Isolated from Cattle: Genotypic and Phenotypic Insights.
Antibiotics (Basel). 2025 Jul 8;14(7):689. doi: 10.3390/antibiotics14070689.
3
Biofilm and surface-motility profiles under polymyxin B stress in multidrug-resistant KAPE pathogens isolated from Ghanaian hospital ICUs.
Exp Biol Med (Maywood). 2025 Jun 6;250:10350. doi: 10.3389/ebm.2025.10350. eCollection 2025.
4
Genetic analysis of flagellar-mediated surface sensing by PA14.
J Bacteriol. 2025 Jun 5:e0052024. doi: 10.1128/jb.00520-24.
5
SadB, a mediator of AmrZ proteolysis and biofilm development in Pseudomonas aeruginosa.
NPJ Biofilms Microbiomes. 2025 May 13;11(1):77. doi: 10.1038/s41522-025-00710-0.
6
Co-Existence Slows Diversification in Experimental Populations of E. coli and P. fluorescens.
Environ Microbiol. 2025 Feb;27(2):e70061. doi: 10.1111/1462-2920.70061.
7
Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2417327122. doi: 10.1073/pnas.2417327122. Epub 2025 Feb 3.
8
Genetic Analysis of Flagellar-Mediated Surface Sensing by PA14.
bioRxiv. 2024 Dec 5:2024.12.05.627040. doi: 10.1101/2024.12.05.627040.
9
Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species.
bioRxiv. 2024 Aug 29:2024.08.29.607786. doi: 10.1101/2024.08.29.607786.
10

本文引用的文献

2
Growing and analyzing static biofilms.
Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1. doi: 10.1002/9780471729259.mc01b01s00.
3
The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional.
Mol Microbiol. 2006 Dec;62(5):1264-77. doi: 10.1111/j.1365-2958.2006.05421.x. Epub 2006 Oct 24.
6
Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria.
Appl Environ Microbiol. 2006 Jul;72(7):5027-36. doi: 10.1128/AEM.00682-06.
7
Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa.
Mol Microbiol. 2006 May;60(4):1026-43. doi: 10.1111/j.1365-2958.2006.05156.x.
8
Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6712-7. doi: 10.1073/pnas.0600345103. Epub 2006 Apr 12.
9
The Effect of Solid Surfaces upon Bacterial Activity.
J Bacteriol. 1943 Jul;46(1):39-56. doi: 10.1128/jb.46.1.39-56.1943.
10
Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1.
Appl Environ Microbiol. 2006 Mar;72(3):1910-24. doi: 10.1128/AEM.72.3.1910-1924.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验