Suppr超能文献

蜂鸟提升性能的异速生长。

Allometry of hummingbird lifting performance.

机构信息

Department of Biology, University of California, Riverside, CA 92521, USA.

出版信息

J Exp Biol. 2010 Mar 1;213(5):725-34. doi: 10.1242/jeb.037002.

Abstract

Vertical lifting performance in 67 hummingbird species was studied across a 4000 m elevational gradient. We used the technique of asymptotic load-lifting to elicit maximum sustained muscle power output during loaded hovering flight. Our analysis incorporated direct measurements of maximum sustained load and simultaneous wingbeat kinematics, together with aerodynamic estimates of mass-specific mechanical power output, all within a robust phylogenetic framework for the Trochilidae. We evaluated key statistical factors relevant to estimating slopes for allometric relationships by performing analyses with and without phylogenetic information, and incorporating species-specific measurement error. We further examined allometric relationships at different elevations because this gradient represents a natural experiment for studying physical challenges to animal flight mechanics. Maximum lifting capacity (i.e. vertical force production) declined with elevation, but was either isometric or negatively allometric with respect to both body and muscle mass, depending on elevational occurrence of the corresponding taxa. Maximum relative muscle power output exhibited a negative allometry with respect to muscle mass, supporting theoretical predictions from muscle mechanics.

摘要

我们研究了 67 种蜂鸟物种在 4000 米海拔梯度上的垂直提升性能。我们使用渐近负载提升技术在负载悬停飞行中引发最大持续肌肉动力输出。我们的分析结合了最大持续负载的直接测量和同时的翅膀运动学,以及对质量特定机械动力输出的空气动力学估计,所有这些都在 Trochilidae 的强大系统发育框架内进行。我们通过在没有系统发育信息的情况下进行分析,并结合物种特异性测量误差,评估了估计比例关系斜率的关键统计因素。我们进一步研究了不同海拔高度的比例关系,因为这个梯度代表了研究动物飞行力学物理挑战的自然实验。最大提升能力(即垂直力产生)随海拔升高而降低,但相对于身体和肌肉质量而言,是等距的或负比例的,这取决于相应分类群在海拔上的出现情况。最大相对肌肉动力输出与肌肉质量呈负比例关系,支持肌肉力学的理论预测。

相似文献

1
Allometry of hummingbird lifting performance.
J Exp Biol. 2010 Mar 1;213(5):725-34. doi: 10.1242/jeb.037002.
2
Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17731-6. doi: 10.1073/pnas.0405260101. Epub 2004 Dec 14.
4
Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
J Comp Physiol B. 2017 Jan;187(1):165-182. doi: 10.1007/s00360-016-1016-y. Epub 2016 Jul 18.
5
Limits to vertical force and power production in bumblebees (Hymenoptera: Bombus impatiens).
J Exp Biol. 2010 Feb 1;213(3):426-32. doi: 10.1242/jeb.033563.
7
Kinematics of hovering hummingbird flight along simulated and natural elevational gradients.
J Exp Biol. 2003 Sep;206(Pt 18):3139-47. doi: 10.1242/jeb.00540.
8
Transient hovering performance of hummingbirds under conditions of maximal loading.
J Exp Biol. 1997 Mar;200(Pt 5):921-9. doi: 10.1242/jeb.200.5.921.
9
Effects of body size on take-off flight performance in the Phasianidae (Aves).
J Exp Biol. 2000 Nov;203(Pt 21):3319-32. doi: 10.1242/jeb.203.21.3319.
10
How the hummingbird wingbeat is tuned for efficient hovering.
J Exp Biol. 2018 Oct 15;221(Pt 20):jeb178228. doi: 10.1242/jeb.178228.

引用本文的文献

1
The spatiotemporal richness of hummingbird wing deformations.
J Exp Biol. 2024 May 15;227(10). doi: 10.1242/jeb.246223. Epub 2024 May 21.
2
Reversal of the adipostat control of torpor during migration in hummingbirds.
Elife. 2021 Dec 6;10:e70062. doi: 10.7554/eLife.70062.
3
Domestic egg-laying hens, , do not modulate flapping flight performance in response to wing condition.
R Soc Open Sci. 2021 Jul 28;8(7):210196. doi: 10.1098/rsos.210196. eCollection 2021 Jul.
5
Natural barriers: waterfall transit by small flying animals.
R Soc Open Sci. 2020 Aug 19;7(8):201185. doi: 10.1098/rsos.201185. eCollection 2020 Aug.
7
Factors affecting the dominance hierarchy dynamics in a hummingbird assemblage.
Curr Zool. 2019 Jun;65(3):261-268. doi: 10.1093/cz/zoy057. Epub 2018 Jul 14.
8
Anatomy of the forelimb musculature and ligaments of Psittacus erithacus (Aves: Psittaciformes).
J Anat. 2018 Oct;233(4):496-530. doi: 10.1111/joa.12861. Epub 2018 Jul 22.
9
The biomechanical origin of extreme wing allometry in hummingbirds.
Nat Commun. 2017 Oct 19;8(1):1047. doi: 10.1038/s41467-017-01223-x.
10
Into rude air: hummingbird flight performance in variable aerial environments.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0387.

本文引用的文献

1
The physiology and biomechanics of avian flight at high altitude.
Integr Comp Biol. 2006 Feb;46(1):62-71. doi: 10.1093/icb/icj008. Epub 2006 Jan 6.
2
Into thin air: Physiology and evolution of alpine insects.
Integr Comp Biol. 2006 Feb;46(1):49-61. doi: 10.1093/icb/icj007. Epub 2006 Jan 6.
5
Within-species variation and measurement error in phylogenetic comparative methods.
Syst Biol. 2007 Apr;56(2):252-70. doi: 10.1080/10635150701313830.
6
Flight performance and competitive displacement of hummingbirds across elevational gradients.
Am Nat. 2006 Feb;167(2):216-29. doi: 10.1086/498622. Epub 2005 Dec 12.
7
Unifying constructal theory for scale effects in running, swimming and flying.
J Exp Biol. 2006 Jan;209(Pt 2):238-48. doi: 10.1242/jeb.01974.
8
Scaling of maximum net force output by motors used for locomotion.
J Exp Biol. 2005 May;208(Pt 9):1653-64. doi: 10.1242/jeb.01483.
9
Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17731-6. doi: 10.1073/pnas.0405260101. Epub 2004 Dec 14.
10
Of hummingbirds and helicopters: hovering costs, competitive ability, and foraging strategies.
Am Nat. 2004 Jan;163(1):16-25. doi: 10.1086/380511. Epub 2004 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验