Marden James H
208 Mueller Laboratory, Department of Biology, University Park, PA 16802, USA.
J Exp Biol. 2005 May;208(Pt 9):1653-64. doi: 10.1242/jeb.01483.
Biological and engineered motors are surprisingly similar in their adherence to two or possibly three fundamental regimes for the mass scaling of maximum force output (Fmax). One scaling regime (Group 1: myosin, kinesin, dynein and RNA polymerase molecules; muscle cells; whole muscles; winches; linear actuators) comprises motors that create slow translational motion with force outputs limited by the axial stress capacity of the motor, which results in Fmax scaling as motor mass0.67 (M0.67). Another scaling regime (Group 2: flying birds, bats and insects; swimming fish; running animals; piston engines; electric motors; jets) comprises motors that cycle rapidly, with significant internal and external accelerations, and for whom inertia and fatigue life appear to be important constraints. The scaling of inertial loads and fatigue life both appear to enforce Fmax scaling as M1.0 in these motors. Despite great differences in materials and mechanisms, the mass specific Fmax of Group 2 motors clusters tightly around a mean of 57 N kg(-1), a region of specific force loading where there appears to be a common transition from high- to low-cycle fatigue. For motors subject to multi-axial stresses, the steepness of the load-life curve in the neighborhood of 50-100 N kg(-1) may overwhelm other material and mechanistic factors, thereby homogenizing the mass specific Fmax of grossly dissimilar animals and machines. Rockets scale with Group 1 motors but for different mechanistic reasons; they are free from fatigue constraints and their thrust is determined by mass flow rates that depend on cross sectional area of the exit nozzle. There is possibly a third scaling regime of Fmax for small motors (bacterial and spermatazoan flagella; a protozoan spring) where viscosity dominates over inertia. Data for force output of viscous regime motors are scarce, but the few data available suggest a gradually increasing scaling slope that converges with the Group 2 scaling relationship at a Reynolds number of about 10(2). The Group 1 and Group 2 scaling relationships intersect at a motor mass of 4400 kg, which restricts the force output and design of Group 2 motors greater than this mass. Above 4400 kg, all motors are limited by stress and have Fmax that scales as M0.67; this results in a gradual decline in mass specific Fmax at motor mass greater than 4400 kg. Because of declining mass specific Fmax, there is little or no potential for biological or engineered motors or rockets larger than those already in use.
生物发动机和工程发动机在遵循两种或可能三种最大力输出(Fmax)质量缩放的基本模式方面惊人地相似。一种缩放模式(第1组:肌球蛋白、驱动蛋白、动力蛋白和RNA聚合酶分子;肌肉细胞;整块肌肉;绞车;线性致动器)包括产生缓慢平移运动的发动机,其力输出受发动机轴向应力能力限制,这导致Fmax与发动机质量的0.67次方(M0.67)成比例缩放。另一种缩放模式(第2组:飞鸟、蝙蝠和昆虫;游动的鱼;奔跑的动物;活塞发动机;电动机;喷气式发动机)包括快速循环的发动机,具有显著的内部和外部加速度,对于它们来说,惯性和疲劳寿命似乎是重要的限制因素。在这些发动机中,惯性负载和疲劳寿命的缩放似乎都使得Fmax与M1.0成比例缩放。尽管在材料和机制上有很大差异,但第2组发动机的质量比Fmax紧密聚集在平均57 N kg⁻¹左右,在这个比力负载区域,似乎存在从高周疲劳到低周疲劳的共同转变。对于承受多轴应力的发动机,在50 - 100 N kg⁻¹附近负载 - 寿命曲线的陡峭程度可能会压倒其他材料和机制因素,从而使完全不同的动物和机器的质量比Fmax趋于均匀。火箭与第1组发动机按比例缩放,但原因不同;它们不受疲劳限制,其推力由取决于出口喷嘴横截面积的质量流率决定。对于小型发动机(细菌和精子鞭毛;原生动物的弹簧),可能存在Fmax的第三种缩放模式,其中粘性比惯性占主导。粘性模式发动机的力输出数据很少,但现有的少数数据表明缩放斜率逐渐增加,在雷诺数约为10²时与第2组缩放关系收敛。第1组和第2组缩放关系在发动机质量为4400 kg时相交,这限制了质量大于此值的第2组发动机的力输出和设计。在4400 kg以上,所有发动机都受应力限制,Fmax与M0.67成比例缩放;这导致在发动机质量大于4400 kg时质量比Fmax逐渐下降。由于质量比Fmax下降,对于比现有更大的生物发动机、工程发动机或火箭,几乎没有或根本没有潜力。