The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Computational Molecular Science, QLD 4072, Brisbane, Australia.
J Am Chem Soc. 2010 Mar 10;132(9):2876-7. doi: 10.1021/ja100156d.
The lack of an obvious "band gap" is a formidable hurdle for making a nanotransistor from graphene. Here, we use density functional calculations to demonstrate for the first time that porosity such as evidenced in recently synthesized porous graphene ( http://www.sciencedaily.com/releases/2009/11/091120084337.htm ) opens a band gap. The size of the band gap (3.2 eV) is comparable to most popular photocatalytic titania and graphitic C(3)N(4) materials. In addition, the adsorption of hydrogen on Li-decorated porous graphene is much stronger than that in regular Li-doped graphene due to the natural separation of Li cations, leading to a potential hydrogen storage gravimetric capacity of 12 wt %. In light of the most recent experimental progress on controlled synthesis, these results uncover new potential for the practical application of porous graphene in nanoelectronics and clean energy.
石墨烯制成纳米晶体管的一个巨大障碍是缺乏明显的“带隙”。在这里,我们首次使用密度泛函计算证明,最近合成的多孔石墨烯(http://www.sciencedaily.com/releases/2009/11/091120084337.htm)中的多孔性会产生带隙。带隙的大小(3.2eV)与大多数流行的光催化二氧化钛和石墨 C(3)N(4)材料相当。此外,由于锂离子的自然分离,氢在锂修饰的多孔石墨烯上的吸附比在常规锂掺杂石墨烯上要强得多,导致潜在的储氢重量容量为 12wt%。鉴于最近在可控合成方面的实验进展,这些结果为多孔石墨烯在纳米电子学和清洁能源中的实际应用开辟了新的潜力。