Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
Philos Trans A Math Phys Eng Sci. 2010 Mar 28;368(1915):1385-404. doi: 10.1098/rsta.2009.0274.
This article highlights our recent work concerning the synthesis of metal nanoparticles and their non-ordered superstructures. After a short introduction, the basic synthetic procedures are explained for the nanoparticles used for the assemblies. Furthermore, a fabrication method is itemized for very monodisperse platinum nanoparticles in aqueous solution ranging in diameter from 10 to 100 nm showing distinct optical properties. The next section deals with the synthesis of non-ordered hydro- and aerogels from the as-prepared sols. Very light large surface materials from gold, silver, platinum and gold-silver and platinum-silver sols can be fabricated with the given method. Another way to ultralight superstructures of noble metal nanoparticles using fungi as templates is described in the third section. Although fungi grow inside the colloidal solutions they can assemble the nanoparticles onto their surfaces. These hybrid systems are thus extremely interesting supported superstructures for applications in heterogeneous catalysis, since the numbers of nanoparticles on the fungus can easily be tuned, and the fabrication process is cost-effective, environmentally friendly and the organic templates can be easily removed by simple combustion for regaining the noble metal.
本文重点介绍了我们最近在金属纳米粒子及其无序超结构合成方面的工作。在简短的介绍之后,解释了用于组装的纳米粒子的基本合成步骤。此外,还详细介绍了一种在水溶液中制备直径为 10 至 100nm、具有明显光学性质的非常单分散的铂纳米粒子的制造方法。下一节讨论了由制备的溶胶制备无序水凝胶和气凝胶。使用给定的方法,可以制造出非常轻的大表面积材料,这些材料由金、银、铂以及金-银和铂-银溶胶制成。第三部分描述了使用真菌作为模板来制造贵金属纳米粒子的超轻超结构的另一种方法。尽管真菌在胶体溶液中生长,但它们可以将纳米粒子组装到其表面上。因此,这些混合系统是非常有趣的负载型超结构,可用于多相催化,因为真菌表面上的纳米粒子数量可以很容易地进行调整,并且制造过程具有成本效益、环保,并且有机模板可以通过简单的燃烧轻松去除,从而回收贵金属。