酿酒酵母结构预测驱动遗传学鉴定出 t-RPA 蛋白 Stn1 和 Ten1 之间的界面。
Structure prediction-driven genetics in Saccharomyces cerevisiae identifies an interface between the t-RPA proteins Stn1 and Ten1.
机构信息
Division of Biological Sciences, University of California-San Diego, 10010 N.Torrey Pines Rd., La Jolla, CA 92093-0130, USA.
出版信息
Genetics. 2010 May;185(1):11-21. doi: 10.1534/genetics.109.111922. Epub 2010 Feb 15.
In Saccharomyces cerevisiae, Cdc13, Stn1, and Ten1 are essential for both chromosome capping and telomere length homeostasis. These three proteins have been proposed to perform their roles at chromosome termini as a telomere-dedicated t-RPA complex, on the basis of several parallels with the conventional RPA complex. In this study, we have used several approaches to test whether a predicted alpha-helix in the N-terminal domain of the S. cerevisiae Stn1 protein is required for formation of the proposed t-RPA complex, in a manner analogous to the comparable helix in Rpa2. Analysis of a panel of Rpa2-OB(Stn1) chimeras indicates that whether a chimeric protein contains the Rpa2 or Stn1 version of this alpha-helix dictates its ability to function in place of Rpa2 or Stn1, respectively. In addition, mutations introduced into a hydrophobic surface of the predicted Stn1 alpha-helix eliminated association with Ten1. Strikingly, allele-specific suppression of a stn1 mutation in this helix (stn1-L164D) by a ten1 mutation (ten1-D138Y) resulted in a restored Stn1-Ten1 interaction, supporting the identification of a Stn1-Ten1 interface. We conclude that Stn1 interacts with Ten1 through an alpha-helix, in a manner analogous to the interaction between the comparable subunits of the RPA complex.
在酿酒酵母中,Cdc13、Stn1 和 Ten1 对于染色体加帽和端粒长度的稳态都是必需的。这三种蛋白质被认为在染色体末端作为端粒专用的 t-RPA 复合物发挥作用,这是基于与传统 RPA 复合物的几个相似之处。在这项研究中,我们使用了几种方法来测试酿酒酵母 Stn1 蛋白的 N 端结构域中预测的α螺旋是否需要形成所提议的 t-RPA 复合物,其方式类似于 Rpa2 中的可比螺旋。对一组 Rpa2-OB(Stn1)嵌合体的分析表明,嵌合蛋白是否包含 Rpa2 或 Stn1 版本的该α螺旋决定了其分别替代 Rpa2 或 Stn1 的能力。此外,引入预测的 Stn1α螺旋的疏水面中的突变消除了与 Ten1 的关联。引人注目的是,该螺旋中的 stn1 突变(stn1-L164D)在 ten1 突变(ten1-D138Y)中的等位基因特异性抑制导致 Stn1-Ten1 相互作用恢复,支持鉴定 Stn1-Ten1 界面。我们得出的结论是,Stn1 通过α螺旋与 Ten1 相互作用,其方式类似于 RPA 复合物的可比亚基之间的相互作用。