Sun Jia, Yu Eun Young, Yang Yuting, Confer Laura A, Sun Steven H, Wan Ke, Lue Neal F, Lei Ming
Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
Genes Dev. 2009 Dec 15;23(24):2900-14. doi: 10.1101/gad.1851909.
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N-Rpa3-like complex. In both structures, the OB folds of the two components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix-turn-helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N-Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N-Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1-Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3' overhangs that works in parallel with or instead of the well-characterized POT1-TPP1/TEBPalpha-beta complex.
在出芽酵母中,Cdc13、Stn1和Ten1形成一个异源三聚体复合物(CST),该复合物对于端粒保护和维持至关重要。先前的生物信息学分析揭示,在Stn1的N端(Stn1N)存在一个假定的寡核苷酸/寡糖结合(OB)折叠结构域,该结构域与真核单链DNA结合蛋白复合物复制蛋白A(RPA)的一个亚基Rpa2的OB折叠结构域序列相似性有限。在此,我们展示了来自多种出芽酵母和裂殖酵母的Stn1和Ten1的功能及结构分析。热带假丝酵母Stn1N与Ten1复合的晶体结构展示出一种类似Rpa2N-Rpa3的复合物。在这两种结构中,两个组分的OB折叠结构域通过两个C端螺旋之间的相互作用彼此堆积。酿酒酵母Stn1的C端结构域(Stn1C)的结构被发现包含两个相关的带翼螺旋-转角-螺旋(WH)基序,其中一个与Rpa2 C端的WH基序最为相似,这再次支持了Stn1类似于Rpa2的观点。裂殖酵母粟酒裂殖酵母Stn1N-Ten1复合物的晶体结构展现出与热带假丝酵母Stn1N-Ten1几乎相同的结构。白色念珠菌Stn1和Ten1蛋白的功能分析揭示了这些蛋白在抑制端粒处异常的端粒酶和重组活性方面的关键作用。破坏Stn1-Ten1相互作用的突变会导致端粒去帽,并消除Ten1在端粒的定位。总体而言,我们的结构和功能研究表明,CST复合物并非局限于出芽酵母端粒,而是可能代表一种在3'端单链悬突处进化保守的类似RPA的端粒复合物,它与特征明确的POT1-TPP1/TEBPα-β复合物并行发挥作用或取而代之。