Suppr超能文献

电缆方程的解析解预测了被动分流端圆柱电缆对细胞外振荡电场的频率偏好。

An analytic solution of the cable equation predicts frequency preference of a passive shunt-end cylindrical cable in response to extracellular oscillating electric fields.

机构信息

Department of Computational Intelligence and System Science, Tokyo Institute of Technology, Yokohama, Japan.

出版信息

Biophys J. 2010 Feb 17;98(4):524-33. doi: 10.1016/j.bpj.2009.10.041.

Abstract

Under physiological and artificial conditions, the dendrites of neurons can be exposed to electric fields. Recent experimental studies suggested that the membrane resistivity of the distal apical dendrites of cortical and hippocampal pyramidal neurons may be significantly lower than that of the proximal dendrites and the soma. To understand the behavior of dendrites in time-varying extracellular electric fields, we analytically solved cable equations for finite cylindrical cables with and without a leak conductance attached to one end by employing the Green's function method. The solution for a cable with a leak at one end for direct-current step electric fields shows a reversal in polarization at the leaky end, as has been previously shown by employing the separation of variables method and Fourier series expansion. The solution for a cable with a leak at one end for alternating-current electric fields reveals that the leaky end shows frequency preference in the response amplitude. Our results predict that a passive dendrite with low resistivity at the distal end would show frequency preference in response to sinusoidal extracellular local field potentials. The Green's function obtained in our study can be used to calculate response for any extracellular electric field.

摘要

在生理和人为条件下,神经元的树突可以暴露在电场中。最近的实验研究表明,皮质和海马锥体神经元的远侧顶树突的膜电阻可能明显低于近侧树突和胞体的膜电阻。为了了解在时变细胞外电场中树突的行为,我们通过格林函数法对带有和不带有一端泄漏电导的有限圆柱形电缆的电缆方程进行了分析求解。对于一端带有泄漏的电缆,对于直流阶跃电场的解显示在泄漏端发生极化反转,这与以前采用变量分离法和傅里叶级数展开所得到的结果一致。对于一端带有泄漏的电缆,对于交流电电场的解表明,泄漏端在响应幅度上表现出频率偏好。我们的结果预测,在远端具有低电阻的被动树突对正弦细胞外局部场电位的反应会表现出频率偏好。我们研究中获得的格林函数可用于计算任何细胞外电场的响应。

相似文献

2
Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021902. doi: 10.1103/PhysRevE.81.021902. Epub 2010 Feb 2.
3
Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042723. doi: 10.1103/PhysRevE.90.042723. Epub 2014 Oct 28.
4
Rigorous Green's function formulation for transmembrane potential induced along a 3-D infinite cylindrical cell.
IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1491-503. doi: 10.1109/TBME.2002.805479.
5
I interacts with somato-dendritic structure to determine frequency response to weak alternating electric field stimulation.
J Neurophysiol. 2018 Mar 1;119(3):1029-1036. doi: 10.1152/jn.00541.2017. Epub 2017 Nov 29.
6
Extracellular DC electric fields induce nonuniform membrane polarization in rat hippocampal CA1 pyramidal neurons.
Brain Res. 2011 Apr 6;1383:22-35. doi: 10.1016/j.brainres.2011.01.097. Epub 2011 Feb 3.
8
Generalized cable theory for neurons in complex and heterogeneous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022709. doi: 10.1103/PhysRevE.88.022709. Epub 2013 Aug 13.
9
Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields.
PLoS Comput Biol. 2018 May 4;14(5):e1006124. doi: 10.1371/journal.pcbi.1006124. eCollection 2018 May.
10
The attenuation of passively propagating dendritic potentials in a motoneurone cable model.
J Physiol. 1973 Nov;234(3):637-64. doi: 10.1113/jphysiol.1973.sp010365.

引用本文的文献

1
Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields.
PLoS Comput Biol. 2018 May 4;14(5):e1006124. doi: 10.1371/journal.pcbi.1006124. eCollection 2018 May.
2
Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.
PLoS Comput Biol. 2016 Nov 28;12(11):e1005206. doi: 10.1371/journal.pcbi.1005206. eCollection 2016 Nov.

本文引用的文献

1
Steep decrease in the specific membrane resistance in the apical dendrites of hippocampal CA1 pyramidal neurons.
Neurosci Res. 2009 May;64(1):83-95. doi: 10.1016/j.neures.2009.01.012. Epub 2009 Feb 7.
3
Translational principles of deep brain stimulation.
Nat Rev Neurosci. 2007 Aug;8(8):623-35. doi: 10.1038/nrn2196.
4
Estimated distribution of specific membrane resistance in hippocampal CA1 pyramidal neuron.
Brain Res. 2006 Dec 13;1125(1):199-208. doi: 10.1016/j.brainres.2006.09.095. Epub 2006 Nov 17.
5
Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites.
J Physiol. 2005 Oct 1;568(Pt 1):69-82. doi: 10.1113/jphysiol.2005.086793. Epub 2005 Jul 7.
6
Mechanisms of deep brain stimulation: an intracellular study in rat thalamus.
J Physiol. 2004 Aug 15;559(Pt 1):301-13. doi: 10.1113/jphysiol.2004.064998. Epub 2004 Jun 24.
7
Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.
J Physiol. 2004 May 15;557(Pt 1):175-90. doi: 10.1113/jphysiol.2003.055772. Epub 2004 Feb 20.
8
Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
J Neurophysiol. 2004 Apr;91(4):1457-69. doi: 10.1152/jn.00989.2003. Epub 2003 Dec 10.
9
Branching dendritic trees and motoneuron membrane resistivity.
Exp Neurol. 1959 Nov;1:491-527. doi: 10.1016/0014-4886(59)90046-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验