Bédard Claude, Destexhe Alain
Unité de Neuroscience, Information et Complexité (UNIC), CNRS, Gif-sur-Yvette, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022709. doi: 10.1103/PhysRevE.88.022709. Epub 2013 Aug 13.
Cable theory has been developed over the last decade, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case is a resistive medium, in which case the equations recover the traditional cable equations. We show that for more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong influence on cable filtering as well as on the passive integrative properties of neurons.
电缆理论在过去十年中得到了发展,通常假定膜周围的细胞外空间是一个理想电阻。然而,由于各种现象,如极化、离子扩散或电容效应,细胞外介质可能表现出更复杂的电学性质,但其对电缆特性的影响尚不清楚。在本文中,我们将电缆理论推广到嵌入任意复杂细胞外介质中的膜。我们概述了广义电缆方程,然后考虑了具体情况。最简单的情况是电阻性介质,在这种情况下,方程可恢复为传统的电缆方程。我们表明,对于更复杂的介质,例如在存在离子扩散的情况下,对电缆特性(如电压衰减)的影响可能很大。我们通过将广义电缆与传统电缆进行比较,以数值方式对此进行了说明。我们得出结论,细胞内和细胞外介质的性质可能对电缆滤波以及神经元的被动整合特性有很大影响。