Bedard Claude, Destexhe Alain
UNIC, CNRS, F-91198 Gif-sur-Yvette, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042723. doi: 10.1103/PhysRevE.90.042723. Epub 2014 Oct 28.
Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.
神经元会产生磁场,这些磁场可用诸如脑磁图等宏观技术进行记录。解释神经元磁场产生的理论涉及均匀电阻性细胞外介质中的树突电缆结构。在此,我们通过考虑具有任意复杂电学特性的细胞外介质中的树突电缆来推广该模型。此方法基于多尺度平均场理论,其中将神经元视为与“平均”细胞外介质(由特定阻抗表征)相互作用。我们首先表明,正如预期的那样,广义电缆方程和标准电缆产生的磁场主要取决于电缆中的轴向电流,细胞外电流的贡献适中。较出乎意料的是,我们还表明细胞外和细胞内介质的性质会影响轴向电流,进而也会影响神经元磁场。我们通过数值模拟说明了这些特性,并提出了实验来验证这些发现。