California Institute for Quantitative Biosciences and Berkeley Center for Synthetic Biology, University of California, Berkeley, CA 94720, USA.
Nucleic Acids Res. 2010 May;38(8):2736-47. doi: 10.1093/nar/gkq082. Epub 2010 Feb 16.
The ability to generate RNA aptamers for synthetic biology using in vitro selection depends on the informational complexity (IC) needed to specify functional structures that bind target ligands with desired affinities in physiological concentrations of magnesium. We investigate how selection for high-affinity aptamers is constrained by chemical properties of the ligand and the need to bind in low magnesium. We select two sets of RNA aptamers that bind planar ligands with dissociation constants (K(d)s) ranging from 65 nM to 100 microM in physiological buffer conditions. Aptamers selected to bind the non-proteinogenic amino acid, p-amino phenylalanine (pAF), are larger and more informationally complex (i.e., rarer in a pool of random sequences) than aptamers selected to bind a larger fluorescent dye, tetramethylrhodamine (TMR). Interestingly, tighter binding aptamers show less dependence on magnesium than weaker-binding aptamers. Thus, selection for high-affinity binding may automatically lead to structures that are functional in physiological conditions (1-2.5 mM Mg(2+)). We hypothesize that selection for high-affinity binding in physiological conditions is primarily constrained by ligand characteristics such as molecular weight (MW) and the number of rotatable bonds. We suggest that it may be possible to estimate aptamer-ligand affinities and predict whether a particular aptamer-based design goal is achievable before performing the selection.
使用体外选择生成用于合成生物学的 RNA 适体的能力取决于在镁的生理浓度下指定具有所需亲和力的功能结构所需的信息复杂性 (IC)。我们研究了在结合低镁时对高亲和力适体的选择如何受到配体的化学性质和结合的需要的限制。我们选择了两组 RNA 适体,它们在生理缓冲条件下结合具有从 65 nM 到 100 microM 的解离常数 (Kd) 的平面配体。与选择结合更大的荧光染料四甲基罗丹明 (TMR)的适体相比,选择结合非蛋白质氨基酸对氨基苯丙氨酸 (pAF) 的适体更大且信息更复杂(即在随机序列池中更稀有)。有趣的是,结合更紧密的适体比结合较弱的适体对镁的依赖性更小。因此,高亲和力结合的选择可能会自动导致在生理条件下(1-2.5 mM Mg2+)起作用的结构。我们假设在生理条件下选择高亲和力结合主要受到配体特性的限制,例如分子量 (MW) 和可旋转键的数量。我们建议,在进行选择之前,可能可以估计适体-配体亲和力并预测特定基于适体的设计目标是否可以实现。