Suppr超能文献

缩放和平移变换捕捉了达尔文雀类的喙形变化。

Scaling and shear transformations capture beak shape variation in Darwin's finches.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3356-60. doi: 10.1073/pnas.0911575107. Epub 2010 Feb 16.

Abstract

Evolution by natural selection has resulted in a remarkable diversity of organism morphologies that has long fascinated scientists and served to establish the first relations among species. Despite the essential role of morphology as a phenotype of species, there is not yet a formal, mathematical scheme to quantify morphological phenotype and relate it to both the genotype and the underlying developmental genetics. Herein we demonstrate that the morphological diversity in the beaks of Darwin's Finches is quantitatively accounted for by the mathematical group of affine transformations. Specifically, we show that all beak shapes of Ground Finches (genus Geospiza) are related by scaling transformations (a subgroup of the affine group), and the same relationship holds true for all the beak shapes of Tree, Cocos, and Warbler Finches (three distinct genera). This analysis shows that the beak shapes within each of these groups differ only by their scales, such as length and depth, which are genetically controlled by Bmp4 and Calmodulin. By measuring Bmp4 expression in the beak primordia of the species in the genus Geospiza, we provide a quantitative map between beak morphology and the expression levels of Bmp4. The complete morphological variation within the beaks of Darwin's finches can be explained by extending the scaling transformations to the entire affine group, by including shear transformations. Altogether our results suggest that the mathematical theory of groups can help decode morphological variation, and points to a potentially hierarchical structure of morphological diversity and the underlying developmental processes.

摘要

自然选择导致了生物体形态的显著多样性,这长期以来一直令科学家着迷,并为建立物种之间的最初关系提供了依据。尽管形态作为物种的表型具有重要作用,但目前还没有一种正式的、数学的方案来量化形态表型,并将其与基因型和潜在的发育遗传学联系起来。本文中,我们证明了达尔文雀类的喙部形态多样性可以用仿射变换的数学群来定量解释。具体来说,我们表明,地雀属(Geospiza)的所有鸟喙形状都是由缩放变换(仿射群的一个子群)相关联的,而树雀、寇克斯雀和莺雀(三个不同的属)的所有鸟喙形状也存在同样的关系。这种分析表明,这些组内的喙形状仅在其尺度上有所不同,例如长度和深度,这些尺度由 Bmp4 和钙调蛋白基因控制。通过测量地雀属物种喙原基中的 Bmp4 表达,我们提供了喙形态和 Bmp4 表达水平之间的定量关系图。通过将缩放变换扩展到整个仿射群,并包括剪切变换,可以解释达尔文雀类喙内的所有形态变化。总之,我们的研究结果表明,群论的数学理论可以帮助解码形态变化,并指出了形态多样性和潜在发育过程的潜在层次结构。

相似文献

1
Scaling and shear transformations capture beak shape variation in Darwin's finches.缩放和平移变换捕捉了达尔文雀类的喙形变化。
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3356-60. doi: 10.1073/pnas.0911575107. Epub 2010 Feb 16.
10
Darwin's Galapagos finches in modern biology.达尔文的加拉帕戈斯雀在现代生物学中的作用。
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 12;365(1543):1001-7. doi: 10.1098/rstb.2009.0321.

引用本文的文献

1
Common developmental origins of beak shapes and evolution in theropods.兽脚亚目恐龙喙部形状的常见发育起源与进化
iScience. 2025 Mar 19;28(4):112246. doi: 10.1016/j.isci.2025.112246. eCollection 2025 Apr 18.
3
Conserved physical mechanisms of cell and tissue elongation.细胞和组织伸长的保守物理机制。
Development. 2024 May 15;151(10). doi: 10.1242/dev.202687. Epub 2024 May 20.
7

本文引用的文献

2
The evolution of hierarchical gene regulatory networks.分层基因调控网络的进化
Nat Rev Genet. 2009 Feb;10(2):141-8. doi: 10.1038/nrg2499. Epub 2009 Jan 13.
3
A geometric morphometric appraisal of beak shape in Darwin's finches.对达尔文雀喙形状的几何形态测量评估。
J Evol Biol. 2008 Jan;21(1):263-275. doi: 10.1111/j.1420-9101.2007.01449.x. Epub 2007 Nov 15.
5
D'Arcy Thompson and the theory of transformations.达西·汤普森与变换理论。
Nat Rev Genet. 2006 May;7(5):401-6. doi: 10.1038/nrg1835.
8
New insights into craniofacial morphogenesis.颅面形态发生的新见解。
Development. 2005 Mar;132(5):851-61. doi: 10.1242/dev.01705.
10
Cranial skeletal biology.颅骨骨骼生物学
Nature. 2003 May 15;423(6937):326-31. doi: 10.1038/nature01656.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验