Suppr超能文献

用于触发内容物释放的含可光聚合磷脂脂质体的设计

DESIGN OF LIPOSOMES CONTAINING PHOTOPOLYMERIZABLE PHOSPHOLIPIDS FOR TRIGGERED RELEASE OF CONTENTS.

作者信息

Yavlovich Amichai, Singh Alok, Tarasov Sergey, Capala Jacek, Blumenthal Robert, Puri Anu

机构信息

Membrane Structure and Function Section, Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702.

出版信息

J Therm Anal Calorim. 2009 Oct 1;98(1):97-104. doi: 10.1007/s10973-009-0228-8.

Abstract

We describe a novel class of light-triggerable liposomes prepared from a photo-polymerizable phospholipid DC(8,9)PC (1,2- bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) and DPPC (1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine). Exposure to UV (254 nm) radiation for 0-45 minutes at 25 degrees C resulted in photo-polymerization of DC(8,9)PC in these liposomes and the release of an encapsulated fluorescent dye (calcein). Kinetics and extents of calcein release correlated with mol% of DC(8,9)PC in the liposomes. Photopolymerization and calcein release occurred only from DPPC/DC(8,9)PC but not from Egg PC/DC(8,9)PC liposomes. Our data indicate that phase separation and packing of polymerizable lipids in the liposome bilayer are major determinants of photo-activation and triggered contents release.

摘要

我们描述了一类新型的光触发脂质体,它由可光聚合的磷脂DC(8,9)PC(1,2-双(二十三碳-10,12-二炔酰基)-sn-甘油-3-磷酸胆碱)和DPPC(1,2-二棕榈酰-sn-甘油-3-磷酸胆碱)制备而成。在25℃下暴露于紫外线(254nm)辐射0至45分钟,导致这些脂质体中的DC(8,9)PC发生光聚合,并释放出包封的荧光染料(钙黄绿素)。钙黄绿素释放的动力学和程度与脂质体中DC(8,9)PC的摩尔百分比相关。光聚合和钙黄绿素释放仅发生在DPPC/DC(8,9)PC脂质体中,而在Egg PC/DC(8,9)PC脂质体中则不会发生。我们的数据表明,脂质体双层中可聚合脂质的相分离和堆积是光激活和触发内容物释放的主要决定因素。

相似文献

1
DESIGN OF LIPOSOMES CONTAINING PHOTOPOLYMERIZABLE PHOSPHOLIPIDS FOR TRIGGERED RELEASE OF CONTENTS.
J Therm Anal Calorim. 2009 Oct 1;98(1):97-104. doi: 10.1007/s10973-009-0228-8.
3
A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells.
Biochim Biophys Acta. 2011 Jan;1808(1):117-26. doi: 10.1016/j.bbamem.2010.07.030. Epub 2010 Aug 4.
6
Quantitative analysis of phospholipids using nanostructured laser desorption ionization targets.
Lipids. 2011 May;46(5):469-77. doi: 10.1007/s11745-010-3493-1. Epub 2011 Feb 15.
7
Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
Biochimie. 2013 Nov;95(11):2018-33. doi: 10.1016/j.biochi.2013.07.006. Epub 2013 Jul 16.
8
Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis.
Photochem Photobiol. 2000 Jul;72(1):57-61. doi: 10.1562/0031-8655(2000)072<0057:auodip>2.0.co;2.
9
Formation of nanopores in DiynePC-DPPC complex lipid bilayers triggered by on-demand photo-polymerization.
RSC Adv. 2018 Aug 6;8(49):27988-27994. doi: 10.1039/c8ra04908d. eCollection 2018 Aug 2.
10

引用本文的文献

1
Carthamin yellow-loaded glycyrrhetinic acid liposomes alleviate interstitial fibrosis in diabetic nephropathy.
Ren Fail. 2025 Dec;47(1):2459356. doi: 10.1080/0886022X.2025.2459356. Epub 2025 Feb 4.
2
Drug-phospholipid conjugate nano-assembly for drug delivery.
Smart Med. 2024 Dec 22;3(4):e20240053. doi: 10.1002/SMMD.20240053. eCollection 2024 Dec.
3
Predicting Calcein Release from Ultrasound-Targeted Liposomes: A Comparative Analysis of Random Forest and Support Vector Machine.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241296725. doi: 10.1177/15330338241296725.
4
Magnetic Modulation of Biochemical Synthesis in Synthetic Cells.
J Am Chem Soc. 2024 May 15;146(19):13176-13182. doi: 10.1021/jacs.4c00845. Epub 2024 May 1.
5
Artificial cells for in vivo biomedical applications through red blood cell biomimicry.
Nat Commun. 2024 Mar 20;15(1):2504. doi: 10.1038/s41467-024-46732-8.
6
Cell-mimicking polyethylene glycol-diacrylate based nanolipogel for encapsulation and delivery of hydrophilic biomolecule.
Front Bioeng Biotechnol. 2023 Jan 17;11:1113236. doi: 10.3389/fbioe.2023.1113236. eCollection 2023.
7
Light-Activated Assembly of Connexon Nanopores in Synthetic Cells.
J Am Chem Soc. 2023 Feb 15;145(6):3561-3568. doi: 10.1021/jacs.2c12491. Epub 2023 Feb 1.
8
Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2206563119. doi: 10.1073/pnas.2206563119. Epub 2022 Oct 12.
9
Formation of nanopores in DiynePC-DPPC complex lipid bilayers triggered by on-demand photo-polymerization.
RSC Adv. 2018 Aug 6;8(49):27988-27994. doi: 10.1039/c8ra04908d. eCollection 2018 Aug 2.
10
Pharmaceutical Development and Design of Thermosensitive Liposomes Based on the QbD Approach.
Molecules. 2022 Feb 24;27(5):1536. doi: 10.3390/molecules27051536.

本文引用的文献

2
Highly stable vesicles composed of a new chain-terminus acetylenic photopolymeric phospholipid.
Chem Phys Lipids. 2001 Aug;112(2):99-108. doi: 10.1016/s0009-3084(01)00173-6.
4
Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours.
Drugs. 1997;54 Suppl 4:15-21. doi: 10.2165/00003495-199700544-00005.
5
Formation and properties of a network gel formed from mixtures of diacetylenic and short-chain phosphocholine lipids.
Biochem Biophys Res Commun. 1994 Aug 30;203(1):296-305. doi: 10.1006/bbrc.1994.2181.
7
Polymerized phosphatidyl choline vesicles. Stabilized and controllable time-release carriers.
Biochem Biophys Res Commun. 1981 Jul 16;101(1):131-6. doi: 10.1016/s0006-291x(81)80020-4.
8
Phospholipid polymers--synthesis and spectral characteristics.
Biochim Biophys Acta. 1980 Oct 16;602(1):57-69. doi: 10.1016/0005-2736(80)90289-8.
9
Liposomes from polymerizable phospholipids.
Chem Phys Lipids. 1983 Nov;33(4):355-74. doi: 10.1016/0009-3084(83)90028-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验