Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, U.K.
Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, U.K.
J Am Chem Soc. 2024 May 15;146(19):13176-13182. doi: 10.1021/jacs.4c00845. Epub 2024 May 1.
Synthetic cells can be constructed from diverse molecular components, without the design constraints associated with modifying 'living' biological systems. This can be exploited to generate cells with abiotic components, creating functionalities absent in biology. One example is magnetic responsiveness, the activation and modulation of encapsulated biochemical processes using a magnetic field, which is absent from existing synthetic cell designs. This is a critical oversight, as magnetic fields are uniquely bio-orthogonal, noninvasive, and highly penetrative. Here, we address this by producing artificial magneto-responsive organelles by coupling thermoresponsive membranes with hyperthermic FeO nanoparticles and embedding them in synthetic cells. Combining these systems enables synthetic cell microreactors to be built using a nested vesicle architecture, which can respond to alternating magnetic fields through in situ enzymatic catalysis. We also demonstrate the modulation of biochemical reactions by using different magnetic field strengths and the potential to tune the system using different lipid compositions. This platform could unlock a wide range of applications for synthetic cells as programmable micromachines in biomedicine and biotechnology.
合成细胞可以由各种分子成分构建而成,而无需受到修改“活体”生物系统相关的设计限制。这可以用来生成具有非生物成分的细胞,从而创造生物学中不存在的功能。一个例子是磁响应性,即使用磁场激活和调节封装的生化过程,这在现有的合成细胞设计中是不存在的。这是一个关键的疏忽,因为磁场具有独特的生物正交性、非侵入性和高度穿透性。在这里,我们通过将热敏膜与超热 FeO 纳米粒子耦合,并将其嵌入合成细胞中来产生人工磁响应细胞器来解决这个问题。将这些系统结合起来,可以使用嵌套囊泡结构构建合成细胞微反应器,该微反应器可以通过原位酶催化对交变磁场做出响应。我们还通过使用不同的磁场强度来证明生化反应的调节,并展示了使用不同的脂质组成来调整系统的潜力。该平台可以为合成细胞作为生物医学和生物技术中的可编程微型机器解锁广泛的应用。