Suppr超能文献

使用相似度度量进行可信分类。

Using a similarity measure for credible classification.

作者信息

Subasi M, Subasi E, Anthony M, Hammer P L

机构信息

RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA.

出版信息

Discrete Appl Math. 2009 Mar 6;157(5):1104-1112. doi: 10.1016/j.dam.2008.04.007.

Abstract

This paper concerns classification by Boolean functions. We investigate the classification accuracy obtained by standard classification techniques on unseen points (elements of the domain, {0, 1}(n), for some n) that are similar, in particular senses, to the points that have been observed as training observations. Explicitly, we use a new measure of how similar a point x in {0, 1}(n) is to a set of such points to restrict the domain of points on which we offer a classification. For points sufficiently dissimilar, no classification is given. We report on experimental results which indicate that the classification accuracies obtained on the resulting restricted domains are better than those obtained without restriction. These experiments involve a number of standard data-sets and classification techniques. We also compare the classification accuracies with those obtained by restricting the domain on which classification is given by using the Hamming distance.

摘要

本文关注基于布尔函数的分类。我们研究了标准分类技术在未见点(对于某个(n),定义域({0, 1}^n)中的元素)上获得的分类准确率,这些未见点在特定意义上与作为训练观测值所观察到的点相似。具体而言,我们使用一种新的度量来衡量({0, 1}^n)中的点(x)与一组此类点的相似程度,以限制我们提供分类的点的定义域。对于差异足够大的点,则不给出分类。我们报告的实验结果表明,在所得受限定义域上获得的分类准确率优于无限制情况下获得的准确率。这些实验涉及多个标准数据集和分类技术。我们还将分类准确率与通过使用汉明距离限制分类定义域所获得的准确率进行了比较。

相似文献

1
Using a similarity measure for credible classification.使用相似度度量进行可信分类。
Discrete Appl Math. 2009 Mar 6;157(5):1104-1112. doi: 10.1016/j.dam.2008.04.007.
5
Discrete Metric Learning for Fast Image Set Classification.用于快速图像集分类的离散度量学习
IEEE Trans Image Process. 2022;31:6471-6486. doi: 10.1109/TIP.2022.3212284. Epub 2022 Oct 21.
7
Nearest neighbors by neighborhood counting.通过邻域计数确定最近邻域。
IEEE Trans Pattern Anal Mach Intell. 2006 Jun;28(6):942-53. doi: 10.1109/TPAMI.2006.126.
8
Domain Generalization in Biosignal Classification.生物信号分类中的领域泛化。
IEEE Trans Biomed Eng. 2021 Jun;68(6):1978-1989. doi: 10.1109/TBME.2020.3045720. Epub 2021 May 21.
9
Aggregated distance metric learning (ADM) for image classification in presence of limited training data.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):33-40. doi: 10.1007/978-3-642-23626-6_5.

引用本文的文献

本文引用的文献

1
An overview of statistical learning theory.统计学习理论概述。
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验