Suppr超能文献

血管平滑肌细胞对血管紧张素II和内皮素-1收缩反应的信号传导机制

Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1.

作者信息

Wynne Brandi M, Chiao Chin-Wei, Webb R Clinton

机构信息

Medical College of Georgia, Augusta, GA 30912.

出版信息

J Am Soc Hypertens. 2009 Mar-Apr;3(2):84-95. doi: 10.1016/j.jash.2008.09.002.

Abstract

Vasoactive peptides, such as endothelin-1 and angiotensin II are recognized by specific receptor proteins located in the cell membrane of target cells. Following receptor recognition, the specificity of the cellular response is achieved by G-protein coupling of ligand binding to the regulation of intracellular effectors. These intracellular effectors will be the subject of this brief review on contractile activity initiated by endothelin-1 and angiotensin II.Activation of receptors by endothelin-1 and angiotensin II in smooth muscle cells results in phopholipase C (PLC) activation leading to the generation of the second messengers insitol trisphosphate (IP(3)) and diacylglycerol (DAG). IP(3) stimulates intracellular Ca(2+) release from the sarcoplasmic reticulum and DAG causes protein kinase C (PKC) activation. Additionally, different Ca(2+) entry channels, such as voltage-operated (VOC), receptor-operated (ROC), and store-operated (SOC) Ca(2+) channels, as well as Ca(2+)-permeable nonselective cation channels (NSCC), are involved in the elevation of intracellular Ca(2+) concentration. The elevation in intracellular Ca(2+) is transient and initiates contractile activity by a Ca(2+)-calmodulin interaction, stimulating myosin light chain (MLC) phosphorylation. When the Ca(2+) concentration begins to decline, Ca(2+)-sensitization of the contractile proteins is signaled by the RhoA/Rho-kinase pathway to inhibit the dephosphorylation of MLC phosphatase (MLCP) thereby maintaining force generation. Removal of Ca(2+) from the cytosol and stimulation of MLCP initiates the process of smooth muscle relaxation. In pathological conditions such as hypertension, alterations in these cellular signaling components can lead to an over stimulated state causing maintained vasoconstriction and blood pressure elevation.

摘要

血管活性肽,如内皮素 -1 和血管紧张素 II,可被位于靶细胞膜上的特定受体蛋白识别。受体识别后,通过配体结合的 G 蛋白偶联来调节细胞内效应器,从而实现细胞反应的特异性。这些细胞内效应器将成为本简短综述关于内皮素 -1 和血管紧张素 II 引发的收缩活动的主题。内皮素 -1 和血管紧张素 II 在平滑肌细胞中激活受体导致磷脂酶 C(PLC)活化,进而产生第二信使肌醇三磷酸(IP(3))和二酰甘油(DAG)。IP(3) 刺激肌浆网释放细胞内 Ca(2+),DAG 导致蛋白激酶 C(PKC)活化。此外,不同的 Ca(2+) 进入通道,如电压门控(VOC)、受体门控(ROC)和储存门控(SOC)Ca(2+) 通道,以及 Ca(2+) 通透的非选择性阳离子通道(NSCC),都参与细胞内 Ca(2+) 浓度的升高。细胞内 Ca(2+) 的升高是短暂的,并通过 Ca(2+)-钙调蛋白相互作用引发收缩活动,刺激肌球蛋白轻链(MLC)磷酸化。当 Ca(2+) 浓度开始下降时,收缩蛋白的 Ca(2+) 敏化由 RhoA/Rho 激酶途径发出信号,以抑制 MLC 磷酸酶(MLCP)的去磷酸化,从而维持力的产生。从细胞质中去除 Ca(2+) 并刺激 MLCP 启动平滑肌舒张过程。在高血压等病理状态下,这些细胞信号成分的改变可导致过度刺激状态,引起持续的血管收缩和血压升高。

相似文献

1
Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1.
J Am Soc Hypertens. 2009 Mar-Apr;3(2):84-95. doi: 10.1016/j.jash.2008.09.002.
2
Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease.
Biochem Pharmacol. 2018 Jul;153:91-122. doi: 10.1016/j.bcp.2018.02.012. Epub 2018 Feb 13.
3
6
Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors.
Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288(1):G23-31. doi: 10.1152/ajpgi.00305.2004.
7
Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo.
Am J Physiol Cell Physiol. 2008 Aug;295(2):C358-64. doi: 10.1152/ajpcell.90645.2007. Epub 2008 Jun 4.
8

引用本文的文献

2
Trifolin inhibits the calcium-driven contraction pathway in vascular smooth muscle.
Front Pharmacol. 2025 May 30;16:1573483. doi: 10.3389/fphar.2025.1573483. eCollection 2025.
3
Pericyte and Endothelial Cell Responses within Murine Cerebral Capillaries After Blood Flow Cessation.
bioRxiv. 2025 May 13:2025.05.07.652722. doi: 10.1101/2025.05.07.652722.
5
Imperatorin's Effect on Myocardial Infarction Based on Network Pharmacology and Molecular Docking.
Cardiovasc Ther. 2025 Jan 13;2025:7551459. doi: 10.1155/cdr/7551459. eCollection 2025.
6
The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling.
Channels (Austin). 2024 Dec;18(1):2418128. doi: 10.1080/19336950.2024.2418128. Epub 2024 Oct 19.
7
α1 S1928 Phosphorylation of Ca1.2 Channel Controls Vascular Reactivity and Blood Pressure.
J Am Heart Assoc. 2024 Oct 15;13(20):e035375. doi: 10.1161/JAHA.124.035375. Epub 2024 Oct 8.
9
Phospholipase C-β3 is dispensable for vascular constriction but indispensable for vascular hyperplasia.
Exp Mol Med. 2024 Jul;56(7):1620-1630. doi: 10.1038/s12276-024-01271-6. Epub 2024 Jul 1.
10
Ang II-induced contraction is impaired in the aortas of renovascular hypertensive animal model.
Vasc Biol. 2024 Jun 27;6(1). doi: 10.1530/VB-23-0021. Print 2024 Jan 1.

本文引用的文献

3
High blood pressure arising from a defect in vascular function.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6702-7. doi: 10.1073/pnas.0802128105. Epub 2008 Apr 30.
4
Central role of Gq in the hypertrophic signal transduction of angiotensin II in vascular smooth muscle cells.
Endocrinology. 2008 Jul;149(7):3569-75. doi: 10.1210/en.2007-1694. Epub 2008 Mar 20.
5
Kidney in hypertension: guyton redux.
Hypertension. 2008 Apr;51(4):811-6. doi: 10.1161/HYPERTENSIONAHA.105.063636. Epub 2008 Mar 10.
6
Calcium-dependent Pyk2 activation: a role for calmodulin?
Biochem J. 2008 Mar 15;410(3):e3-4. doi: 10.1042/BJ20080133.
7
Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1.
Eur J Pharmacol. 2008 Mar 31;583(1):135-47. doi: 10.1016/j.ejphar.2008.01.007. Epub 2008 Jan 26.
8
Salt abuse: the path to hypertension.
Nat Med. 2008 Jan;14(1):16-7. doi: 10.1038/nm0108-16.
9
G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension.
Nat Med. 2008 Jan;14(1):64-8. doi: 10.1038/nm1666. Epub 2007 Dec 16.
10
Store-operated calcium entry in vascular smooth muscle.
Br J Pharmacol. 2008 Mar;153(5):846-57. doi: 10.1038/sj.bjp.0707455. Epub 2007 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验